Lecture 23: Scheduling and QoS
Lecture 23 Overview

- Scheduling
 - (Weighted) Fair Queuing

- Quality of Service basics
 - Integrated Services
 - Differentiated Services
So far we’ve done flow-based traffic policing
- Limit the rate of one flow regardless of the load in the network

In general, need scheduling
- Dynamically allocate resources when multiple flows compete
- Give each “flow” (or traffic class) own queue (at least theoretically)

Weighted fair queuing
- Proportional share scheduling
- Schedule round-robins among queues in proportion to some weight parameter
Our Previous Example

1 UDP (10 Mbps) and 31 TCPs sharing a 10 Mbps line
UDP vs. TCP w/FIFO

![Graph comparing Throughput (Mbps) vs. Flow Number]
TCP vs. UDP w/Fair Queuing

![Bar Chart showing Throughput (Mbps) for different Flow Numbers](chart.png)
(Weighted) Fair Queuing
Fair Queuing

- Maintain a queue for each flow
 - What is a flow?

- Implements **max-min fairness**: each flow receives $\min(r_i, f)$, where
 - r_i – flow arrival rate
 - f – link fair rate (see next slide)

- **Weighted Fair Queuing (WFQ)** – associate a weight with each flow to divvy bandwidth up non-equaly
If link congested, compute f such that

\[\sum_i \min(r_i, f) = C \]

- $\min(8, 4) = 4$
- $\min(6, 4) = 4$
- $\min(2, 4) = 2$
Another Example

- Associate a weight w_i with each flow i
- If link congested, compute f such that

$$\sum_i \min(r_i, f \times w_i) = C$$

$(w_1 = 3)$
$(w_2 = 1)$
$(w_3 = 1)$

$\begin{align*}
\text{Flow } i \text{ is guaranteed to be allocated a rate } &\geq w_i C / (\sum_k w_k) \\
\text{If } \sum_k w_k &\leq C, \text{ flow } i \text{ is guaranteed to be allocated a rate } \geq w_i
\end{align*}$

$\begin{align*}
\text{for } f = 2: \\
\min(8, 2 \times 3) &= 6 \\
\min(6, 2 \times 1) &= 2 \\
\min(2, 2 \times 1) &= 2
\end{align*}$
Fluid Flow

- Flows can be served one bit at a time
- WFQ can be implemented using bit-by-bit weighted round robin
 - During each round from each flow that has data to send, send a number of bits equal to the flow’s weight
Fluid Flow Example

- **Orange flow** has packets backlogged between time 0 and 10
- Other flows have packets continuously backlogged
- All packets have the same size
Packet-Based Implementation

- Packet (Real) system: packet transmission cannot be preempted. Why?

- Solution: serve packets in the order in which they would have finished being transmitted in the fluid flow system
Packet-Based Example

- Select the first packet that finishes in the fluid flow system
Quality of Service (QoS)

- So far, we have assumed all traffic is equal and provided best effort delivery
 - Perhaps with enforcement to throttle non-responsive senders

- Not always best model. Why?
 - Application demands
 » I want low-delay low-loss for phone service
 » For backup, I just need bandwidth… don’t care about delay
 - Market differentiation
 » I want to sell better service for more money
 - Bandwidth management
 » Don’t let BitTorrent eat up all UCSD bandwidth
Multimedia Applications

- **Basic idea**
 - Sample signal, packetize, transmit
 - Repeat in reverse at receiver

- **Network Requirements (@ given load)**
 - Delay
 - Jitter (variation in delay)
 - Packet loss
 - Exact parameters a function of interactivity demands, buffer capacity, retransmission time and loss tolerance
 - However… as a rule they want **more**
Different Demands

- Elastic
- Delay-adaptive
- Hard real-time

Utility vs. Bandwidth graphs for different demands.
Packet Classification

- Want to treat some traffic better/worse than others
 - How to identify the more important traffic?
 - How much better do we want to treat it?
 - How do we actually treat it better?

- Router **classifies** based on packet header
 - Aggregates
 - From particular network (IP src address)
 - For particular protocol (e.g., port 80 traffic)
 - Individual network flows
 - 5-tuple (src, dst, src port, dst port, protocol)
 - Special header field that indicates traffic “type”
Service Classes

- **Best-effort**
 - Vanilla IP

- **Differentiated service**
 - Bronze, Silver, Gold, etc… (effectively priorities, \textbf{up to} some amount of bandwidth per time)
 - E.g., best service up to 10Mbps, then best effort

- **Predicted service (soft real-time)**
 - Network guarantees good performance on average
 - Application \textit{promises} to only send as fast as negotiated

- **Guaranteed service (hard real-time)**
 - Network guarantees good performance always
 - Application promises only send as fast as negotiated
How to Specify?

- Kind of service (service class)
- Specify “flowspec” for data flow limits
 - Tspec: describes the flow’s traffic characteristics
 » Average bandwidth + burstiness (contract with ISP)
 - Rspec: describes the service requested from the network
 (e.g., delay target)
- Interface can be interactive (ask network) or via business interface (ask salesman)
 - Can say no
 - If yes, then use scheduling mechanisms in routers (not FIFO anymore) to deliver
More Complicated Routers

Routing Messages → Routing

Routing → Signaling

QoS Control messages → Signaling

Admission Control?

Forwarding Table

Dest Lookup

Data In → Data In

Classifier

Per Flow QoS Table

Scheduler

Data Out
Network-wide QoS

- **Integrated services**
 - Motivated by need for end-to-end guarantees
 - On-line negotiation of per-flow requirements
 - End-to-end per-router negotiation of resources
 - Complex

- **Differentiated services**
 - Motivated by economics (multi-tier pricing)
 - No per-flow state
 - Not end-to-end and not guaranteed services
 - Simple
Integrated Services

- Example: guarantee 1MBps and < 100 ms delay to a flow
Integrated Services

- Allocate resources - perform per-flow admission control
Integrated Services

- Install per-flow state
Integrated Services

- Install per flow state
IntServe: Data Path

- Per-flow classification
IntServe: Data Path

- Per-flow buffer management
IntServe: Data Path

- Per-flow scheduling
Differentiated Services

- **Edge router**
 - Shape & police traffic
 - Mark “class” of traffic in DS header field (e.g., gold service)
 - Note: DS is taken from the old IP ToS field

- **Core router**
 - Schedule aggregates according to marks in header
 - Drop lower-class traffic first during congestion
Summary

- Routers manage their own resources
 - Buffer management may entail marking/dropping
 - Scheduling discipline determines outgoing packet order

- Token bucket and RED
 - Mechanisms to control traffic flowing through routers

- Networks can provide quality of service
 - Combines per-router traffic policing with network signaling
 - IntServ and DiffServ are contrasting approaches
For next time…

● Read Ch. 2.7 in P&D