Lecture 13: Naming

CSE 123: Computer Networks
Stefan Savage
Lecture 13 Overview

- Packet forwarding example
- Discovering addresses (DHCP/ARP)
- User-friendly names (DNS)
Forwarding example

- Packet to 10.1.1.6 arrives
- Path is R2 – R1 – H1 – H2
Forwarding example (2)

- Packet to 10.1.1.6
- Matches 10.1.0.0/23

Forwarding table at R2

<table>
<thead>
<tr>
<th>Destination</th>
<th>Next Hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>127.0.0.1</td>
<td>loopback</td>
</tr>
<tr>
<td>Default or 0/0</td>
<td>10.1.16.1</td>
</tr>
<tr>
<td>10.1.8.0/24</td>
<td>interface1</td>
</tr>
<tr>
<td>10.1.2.0/23</td>
<td>interface2</td>
</tr>
<tr>
<td>10.1.0.0/23</td>
<td>10.1.2.2</td>
</tr>
<tr>
<td>10.1.16.0/24</td>
<td>interface3</td>
</tr>
</tbody>
</table>

H1: 10.1.1.5
H2: 10.1.1.6
H3: 10.1.0.2
H4: 10.1.8.4
R1: 10.1.0.1
R2: 10.1.1.101

10.1.16.2
10.1.16/24
10.1.1/24
10.1.0/24
10.1.16.0/24
10.1.1.4/30
10.1.8/24
10.1.0.2/23
10.1.1.4/24
Forwarding example (3)

- Packet to 10.1.1.6
- Matches 10.1.1.4/30
 - Longest prefix match

Routing table at R1

<table>
<thead>
<tr>
<th>Destination</th>
<th>Next Hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>127.0.0.1</td>
<td>loopback</td>
</tr>
<tr>
<td>Default or 0/0</td>
<td>10.1.2.1</td>
</tr>
<tr>
<td>10.1.0.0/24</td>
<td>interface1</td>
</tr>
<tr>
<td>10.1.1.0/24</td>
<td>interface2</td>
</tr>
<tr>
<td>10.1.2.0/23</td>
<td>interface3</td>
</tr>
<tr>
<td>10.1.1.4/30</td>
<td>10.1.1.101</td>
</tr>
</tbody>
</table>
Forwarding example (4)

- Packet to 10.1.1.6
- Direct route
 - Longest prefix match

Routing table at H1

<table>
<thead>
<tr>
<th>Destination</th>
<th>Next Hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>127.0.0.1</td>
<td>loopback</td>
</tr>
<tr>
<td>Default or 0/0</td>
<td>10.1.1.1</td>
</tr>
<tr>
<td>10.1.1.0/24</td>
<td>interface1</td>
</tr>
<tr>
<td>10.1.1.4/30</td>
<td>interface2</td>
</tr>
</tbody>
</table>
Layers of Identifiers

- **Host name** (e.g., www.ucsd.edu)
 - Used by *humans* to specify host of interest
 - Unique, selected by host administrator
 - Hierarchical, variable-length string of alphanumeric characters

- **IP address** (e.g., 128.54.70.238)
 - Used by *routers* to forward packets
 - Unique, topologically meaningful locator
 - Hierarchical namespace of 32 bits

- **MAC address** (e.g., 58:B0:35:F2:3C:D9)
 - Used by *network adaptors* to identify interesting frames
 - Unique, hard-coded identifier burned into network adaptor
 - Flat name space (of 48 bits in Ethernet)
Naming Hierarchy for Scale

- Host name: **www.ucsd.edu**
 - **Domain**: registrar for each top-level domain (e.g., .edu)
 - **Host name**: local administrator assigns to each host

- IP addresses: **128.54.70.238**
 - **Prefixes**: ICANN, regional Internet registries, and ISPs
 - **Hosts**: static configuration, or dynamic using DHCP

- MAC addresses: **58:B0:35:F2:3C:D9**
 - **OIDs**: assigned to vendors by the IEEE
 - **Adapters**: assigned by the vendor from its block
Mapping Between Identifiers

- Domain Name System (DNS)
 - Given a host name, provide the IP address
 - Given an IP address, provide the host name

- Address Resolution Protocol (ARP)
 - Given an IP address, provide the MAC address
 - To enable communication within the Local Area Network

- Dynamic Host Configuration Protocol (DHCP)
 - Automates host boot-up process
 - Given a MAC address, assign a unique IP address
 - ... and tell host other stuff about the Local Area Network
Address Resolution Protocol

- Every node maintains an ARP table
 - (IP address, MAC address) pair
- Consult the table when sending a packet
 - Map destination IP address to MAC address
 - Encapsulate and transmit the data packet
- What if the IP address is not in the table?
 - Broadcast: “Who has IP address x.x.x.x?”
 - Sender caches the result in its ARP table
Recall: Whence come IP Addresses?

- You already have a bunch from the days when you called Jon Postel and asked for them (e.g. BBN)

- You get them from another provider
 - E.g. buy service from Sprint and get a /24 from one of their address blocks

- You get one directly from a routing registry
 - ARIN: North America, APNIC (Asia Pacific), RIPE (Europe), LACNIC (Latin America), AFRINIC (Africa)
 - Registries get address from IANA (Internet Assigned Numbers Authority)
How Do You And I Get One?

● Well from your provider!

● But how do you know what it is?

● Manual configuration
 ■ They tell you and you type that number into your computer (along with the default gateway, DNS server, etc.)

● Automated configuration
 ■ Dynamic Host Resolution Protocol (DHCP)
Bootstrapping Problem

- Host doesn’t have an IP address yet
 - So, host doesn’t know what source address to use

- Host doesn’t know who to ask for an IP address
 - So, host doesn’t know what destination address to use

- Solution: shout to discover a server who can help
 - Install a special server on the LAN to answer distress calls

Diagram showing hosts and DHCP server
DHCP

- Broadcast-based LAN protocol algorithm
 - Host broadcasts “DHCP discover” on LAN (e.g. Ethernet broadcast)
 - DHCP server responds with “DHCP offer” message
 - Host requests IP address: “DHCP request” message
 - DHCP server sends address: “DHCP ack” message w/IP address

- Easy to have fewer addresses than hosts (e.g. UCSD wireless) and to *renumber* network (use new addresses)

- What if host goes away (how to get address back?)
 - Address is a “lease” not a “grant”, has a timeout
 - Host may have different IP addresses at different times?
Domain Name System (DNS)

- Distributed administrative control
 - Hierarchical name space divided into zones
 - Distributed over a collection of DNS servers

- Hierarchy of DNS servers
 - Root servers
 - Top-level domain (TLD) servers
 - Authoritative DNS servers

- Performing the translations
 - Local DNS servers
 - Resolver software
DNS: Distributed Database

- Generic domains: com, edu, org
- Country domains: ac, uk, zw

- my.east.bar.edu
 - west
 - east
 - foo
 - my

- usr.cam.ac.uk
 - ac
 - cam
 - usr
DNS Root Servers

- 13 root servers (see http://www.root-servers.org/)
 - Labeled A through M

A Verisign, Dulles, VA
C Cogent, Herndon, VA (also Los Angeles)
D U Maryland College Park, MD
G US DoD Vienna, VA
H ARL Aberdeen, MD
J Verisign, (11 locations)

E NASA Mt View, CA
F Internet Software C. Palo Alto, CA (and 17 other locations)

K RIPE London (+ Amsterdam, Frankfurt)
I Autonomica, Stockholm
(plus 3 other locations)

m WIDE Tokyo

B USC-ISI Marina del Rey, CA
L ICANN Los Angeles, CA
Using DNS

- Local DNS server ("default name server")
 - Usually near the end hosts who use it
 - Local hosts configured with local server (e.g., /etc/resolv.conf) or learn the server via DHCP

- Client application
 - Extract server name (e.g., from the URL)
 - Do `gethostbyname()` to trigger resolver code

- Server application
 - Extract client IP address from socket
 - Optional `gethostbyaddr()` to translate into name
Example

Host at cis.poly.edu wants IP address for gaia.cs.umass.edu

1. Requesting host: cis.poly.edu
2. Local DNS server: dns.poly.edu
3. Root DNS server
4. TLD DNS server
5. Authoritative DNS server: dns.cs.umass.edu
6. gaia.cs.umass.edu
Reliability

- DNS servers are replicated
 - Name service available if at least one replica is up
 - Queries can be load balanced between replicas

- UDP used for queries
 - Need reliability: must implement this on top of UDP
 - Try alternate servers on timeout
 - Exponential backoff when retrying same server

- Cache responses to decrease load
 - Both at end hosts and local servers
Summary

- **IP to MAC Address mapping**
 - Dynamic Host Configuration Protocol (DHCP)
 - Address Resolution Protocol (ARP)

- **Domain Name System**
 - Distributed, hierarchical database
 - Distributed collection of servers
 - Caching to improve performance
For Next Time

- Midterm