Administrivia

- Project 1 due tomorrow (Friday) at 11:59pm
- Midterm Tuesday
Overview

- The midterm
- Architectural support for OSes
- Processes
- Threads
- Synchronization
- Scheduling
Midterm

- Covers material through scheduling
- Based upon lecture material, homeworks, and project
- One 8.5”x11” double-sided sheet of notes

- Obligatory: Please, do not cheat
 - Do not copy from your neighbor
 - No one involved will be happy, particularly the teaching staff
Arch Support for OSes

- Types of architecture support
 - Manipulating privileged machine state
 - Generating and handling events
Privileged Instructions

- What are privileged instructions?
 - Who gets to execute them?
 - How does the CPU know whether they can be executed?
 - Difference between user and kernel mode
- Why do they need to be privileged?
- What do they manipulate?
 - Protected control registers
 - Memory management
 - I/O devices
Events

- Events
 - Synchronous: fault (exceptions), system calls
 - Asynchronous: interrupts, software interrupt
- What are faults, and how are they handled?
- What are system calls, and how are they handled?
- What are interrupts, and how are they handled?
 - How do I/O devices use interrupts?
- What is the difference between exceptions and interrupts?
Processes

- What is a process?
- What resource does it virtualize?
- What is the difference between a process and a program?
- What is contained in a process?
Process Data Structures

- Process Control Blocks (PCBs)
 - What information does it contain?
 - How is it used in a context switch?

- State queues
 - What are process states?
 - What is the process state graph?
 - When does a process change state?
 - How does the OS use queues to keep track of processes?
Process Manipulation

- What does CreateProcess on NT do?
- What does fork() on Unix do?
 - What does it mean for it to “return twice”?
- What does exec() on Unix do?
 - How is it different from fork?
- How are fork and exec used to implement shells?
Threads

- What is a thread?
 - What is the difference between a thread and a process?
 - How are they related?
- Why are threads useful?
- What is the difference between user-level and kernel-level threads?
 - What are the advantages/disadvantages of one over another?
Thread Implementation

- How are threads managed by the run-time system?
 - Thread control blocks, thread queues
 - How is this different from process management?

- What operations do threads support?
 - Fork, yield, sleep, etc.
 - What does thread yield do?

- What is a context switch?

- What is the difference between non-preemptive scheduling and preemptive thread scheduling?
 - Voluntary and involuntary context switches
Synchronization

- Why do we need synchronization?
 - Coordinate access to shared data structures
 - Coordinate thread/process execution

- What can happen to shared data structures if synchronization is not used?
 - Race condition
 - Corruption
 - Bank account example

- When are resources shared?
 - Global variables, static objects
 - Heap objects
Concurrent Programs

Monitor **bounded_buffer** {
Resource buffer[N];
// Variables for indexing buffer
// monitor invariant involves these vars
Condition not_full; // space in buffer
Condition not_empty; // value in buffer

void put_resource (Resource R) {
 while (buffer array is full)
 wait(not_full);
 Add R to buffer array;
 signal(not_empty);
}

Resource get_resource() {
 while (buffer array is empty)
 wait(not_empty);
 Get resource R from buffer array;
 signal(not_full);
 return R;
}
} // end monitor

- Our goal is to write concurrent programs...
Concurrent Programs

Need mutual exclusion for critical sections

Resource `get_resource()` {
 while (buffer array is empty) {
 wait(not_empty);
 Get resource R from buffer array;
 }
 signal(not_full);
 return R;
}

Need mechanisms for coordinating threads
Mutual Exclusion

Need mutual exclusion for critical sections

lock.acquire();

...

lock.release();

Interrupts enabled, other threads can run (just not in this critical section)
Mutual Exclusion

void acquire () {
 // Disable interrupts

 // Enable interrupts
}

Also need mutual exclusion; disable interrupts, or use spinlocks with special hardware instructions

lock.acquire();

...

lock.release();
Mutual Exclusion

- What is mutual exclusion?
- What is a critical section?
 - What guarantees do critical sections provide?
 - What are the requirements of critical sections?
 » Mutual exclusion (safety)
 » Progress (liveness)
 » Bounded waiting (no starvation: liveness)
 » Performance
- How does mutual exclusion relate to critical sections?
- What are the mechanisms for building critical sections?
 - Locks, semaphores, monitors, condition variables
Locks

- What does Acquire do?
- What does Release do?
- What does it mean for Acquire/Release to be atomic?
- How can locks be implemented?
 - Spinlocks
 - Disable/enable interrupts
 - Blocking (Nachos)
- How does test-and-set work?
 - What kind of lock does it implement?
- What are the limitations of using spinlocks, interrupts?
 - Inefficient, interrupts turned off too long
Semaphores

- What is a semaphore?
 - What does Wait/P/Decrement do?
 - What does Signal/V/Increment do?
 - How does a semaphore differ from a lock?
 - What is the difference between a binary semaphore and a counting semaphore?
- When do threads block on semaphores?
- When are they woken up again?
- Using semaphores to solve synchronization problems
 - Readers/Writers problem
 - Bounded Buffers problem
Monitors

- What is a monitor?
 - Shared data
 - Procedures
 - Synchronization

- In what way does a monitor provide mutual exclusion?
 - To what extent is it provided?

- How does a monitor differ from a semaphore?

- How does a monitor differ from a lock?

- What kind of support do monitors require?
 - Language, run-time support
Condition Variables

- What is a condition variable used for?
 - Coordinating the execution of threads
 - Not mutual exclusion

- Operations
 - What are the semantics of Wait?
 - What are the semantics of Signal?
 - What are the semantics of Broadcast?

- How are condition variables different from semaphores?
Implementing Monitors

- What does the implementation of a monitor look like?
 - Shared data
 - Procedures
 - A lock for mutual exclusion to procedures (with a queue)
 - Queues for the condition variables

- What is the difference between Hoare and Mesa monitors?
 - Semantics of signal (whether the woken up waiter gets to run immediately or not)
 - What are their tradeoffs?
 - What does Java provide?
 - (Actually, don’t worry about this for the midterm)
Locks and Condition Vars

- In Nachos, we don’t have monitors
- But we want to be able to use condition variables
- So we isolate condition variables and make them independent (not associated with a monitor)
- Instead, we have to associate them with a lock (mutex)
- Now, to use a condition variable…
 - Threads must first acquire the lock (mutex)
 - CV::Wait releases the lock before blocking, acquires it after waking up
Scheduling

- What kinds of scheduling is there?
 - Long-term scheduling
 - Short-term scheduling

- Components
 - Scheduler (dispatcher)

- When does scheduling happen?
 - Job changes state (e.g., waiting to running)
 - Interrupt, exception
 - Job creation, termination
Scheduling Goals

Goals
- Maximize CPU utilization
- Maximize job throughput
- Minimize turnaround time
- Minimize waiting time
- Minimize response time

What is the goal of a batch system?
What is the goal of an interactive system?
Starvation

- Starvation
 - Indefinite denial of a resource (CPU, lock)
- Causes
 - Side effect of scheduling
 - Side effect of synchronization
- Operating systems try to prevent starvation
Scheduling Algorithms

- What are the properties, advantages and disadvantages of the following scheduling algorithms?
 - First Come First Serve (FCFS)/First In First Out (FIFO)
 - Shortest Job First (SJF)
 - Priority
 - Round Robin
 - Multilevel feedback queues

- What scheduling algorithm does Unix use? Why?
Deadlock

- Deadlock happens when processes are waiting on each other and cannot make progress
- What are the conditions for deadlock?
 - Mutual exclusion
 - Hold and wait
 - No preemption
 - Circular wait
- How to visualize, represent abstractly?
 - Resource allocation graph (RAG)
 - Waits for graph (WFG)
Deadlock Approaches

- Dealing with deadlock
 - Ignore it
 - Prevent it (prevent one of the four conditions)
 - Avoid it (have tight control over resource allocation)
 - Detect and recover from it

- What is the Banker’s algorithm?
 - Which of the four approaches above does it implement?
 - (Actually, don’t worry about it for the midterm, suffered enough on the homework)
Race Conditions

What is the range of possible values for x? Why?

```java
int x = 0;
int i, j;

void AddToX() {
    for (i = 0; i < 100; i++) x++;
}

void SubFromX() {
    for (j = 0; j < 100; j++) x--;
}
```
Synchronization

- Event synchronization (e.g., Win32)
- Event::Wait blocks if and only if Event is **unsigned**
- Event::Signal makes Event **signaled**, wakes up blocked threads
- Once signalled, an Event remains **signaled** until deleted
- Use locks and condition variables (e.g., as in Nachos)