Today's learning goals Sipser Ch 1.1 – 1.3

• More about NFAs with \(\varepsilon \)-transitions
• Closure properties of Regular languages using NFAs
• Regular expressions and their languages
• Design a regular expression to describe a given language
• Convert between regular expressions and automata
Application

A language A over Σ is **regular** if and only if

- it is recognized by a DFA
- it is recognized by a NFA

To prove that the class of regular languages is closed under operation :

Let A be a regular language, so recognized by DFA M. Build a **NFA** that recognizes the result of on A. Conclude this result is also a regular language.
The regular operations

For A, B languages over same alphabet, define:

$$A \cup B = \{x | x \in A \text{ or } x \in B\}$$

$$A \circ B = \{xy | x \in A \text{ and } y \in B\}$$

$$A^* = \{x_1x_2 \ldots x_k | k \geq 0 \text{ and each } x_i \in A\}$$

How can we prove that the concatenation of two regular languages is a regular language?
Concatenation

- "Guess" some stage of input at which switch modes

Given $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$, $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ build

$N = (Q_1 \cup Q_2, \Sigma, \delta, q_1, F_2)$ with δ...
Concatenation

\[\delta(q, x) = \begin{cases}
\text{if } q \text{ is in } Q_1, \ x \text{ is in } \Sigma \\
\text{if } q \text{ is in } Q_2, \ x \text{ is in } \Sigma
\end{cases} \]
Concatenation

\[\delta(q, x) = \begin{cases} \delta_1(q, x) & \text{if } q \text{ is in } Q_1, \ x \text{ is in } \Sigma \\ \delta_2(q, x) & \text{if } q \text{ is in } Q_2, \ x \text{ is in } \Sigma \end{cases} \]
Concatenation

\[\delta(q, x) = \begin{cases}
\delta_1(q, x) & \text{if } q \text{ is in } Q_1, x \text{ is in } \Sigma \\
\delta_2(q, x) & \text{if } q \text{ is in } Q_2, x \text{ is in } \Sigma \\
\{q2\} & \text{if } q \text{ is in } F_1, x = \varepsilon \\
\emptyset & \text{otherwise}
\end{cases} \]

Correctness proof in the book (page 61)
Given $M = (Q, \Sigma, \delta, q, F)$, build

$$N = (Q \cup \{s\}, \Sigma, \delta, s, F \cup \{s\})$$

and $\delta(q, x) = \ldots$

Construction in the book (page 63)
Regular languages

To prove that a set of strings over the alphabet Σ is regular,

- Build a DFA whose language is this set.
- Build an NFA whose language is this set.
- Use the closure properties of the class of regular languages to construct this set from others known to be regular.
 - Union
 - Intersection
 - Complementation
 - Concatenation
 - Flip bits
 - Kleene star
Inductive application of closure

R is a **regular expression** over Σ if

1. $R = a$, where $a \in \Sigma$
2. $R = \varepsilon$
3. $R = \emptyset$
4. $R = (R_1 \cup R_2)$, where R_1, R_2 are themselves regular expressions
5. $R = (R_1 \circ R_2)$, where R_1, R_2 are themselves regular expressions
6. (R_1^*), where R_1 is a regular expression.
Regular expressions

Conventions:
• Σ is shorthand for $0 \cup 1$ if $\Sigma = \{0,1\}$
• Parentheses may be omitted
 • Precedence: star, then concatenation, then union
• R^+ is shorthand for RR^*, R_k is shorthand for R concatenated with itself k times
• Circle indicated concatenation may be omitted

Which of the following is **not** a regular expression over $\{0,1\}$?
A. $(\Sigma \Sigma \Sigma)^*$
B. $(\Sigma \cap 1)$
C. $(1^* \emptyset 0)$
D. $\varepsilon \varepsilon$
E. I don't know
The language described by a regular expression, L(R):

- \(L(a) = \{a\} \) (for all \(a \) in \(\Sigma \))
- \(L(\varepsilon) = \{\varepsilon\} \)
- \(L(\emptyset) = \emptyset \)
- \(L(R_1 \cup R_2) = \{w \mid w \text{ in } L(R_1) \text{ or } w \text{ in } L(R_2)\} \)
- \(L(R_1 \circ R_2) = \{w_1w_2 \mid w_1 \text{ in } L(R_1) \text{ or } w_2 \text{ in } L(R_2)\} \)
- \(L(R^*) = L(R)^* \)
L(R)

Which of the following strings is **not** in the language described by

\[
((00)^*(11) \cup 01)^*
\]

A. 00
B. 01
C. 1101
D. \(\varepsilon \)
E. I don't know
L(R)

Let L be the language over \{a,b\} described by the regular expression

\[((a \cup \emptyset) b^*)^*\]

Which of the following is **not** true about L?

A. Some strings in L have equal numbers of a's and b's
B. L contains the string aaaaaaa
C. a's never follow b's in any string in L
D. L can also be represented by the regular expression \((ab^*)^*\)
E. More than one of the above.
Regular expressions in practice

- **Compilers**: first phase of compiling transforms Strings to Tokens *keywords, operators, identifiers, literals*
 - One regular expression for each token type

- **Other software tools**: grep, Perl, Python, Java, Ruby, …
"Regular = regular"

Theorem: A language is regular if and only if some regular expression describes it.

Lemma 1.55: If a language is described by a regular expression, then it is regular.

Lemma 1.60: If a language is regular, then it is described by some regular expression.
L(R) to NFA (to DFA)

- Idea: basic regular expressions are easy to implement as DFA, for inductive step of definition, use closure under regular operations.
- E.g.: build NFA recognizing the language described by

(00 \cup 11)^*
DFA to regular expression

• Idea: use intermediate model GNFA whose labels are regular expressions

• E.g.: build regular expression describing language recognized by
All roads lead to … regular sets?

Are there any languages over \{0,1\} that are not regular?

A. Yes: a language that is recognized by an NFA but not any DFA.

B. Yes: there is some infinite language of strings over \{0,1\} that is not described by any regular expression.

C. No: all languages over \{0,1\} are regular because that's what it means to be a language.

D. No: for each set of strings over \{0,1\}, some DFA recognizes that set.

E. I don't know.
For next time

Haskell project 1 due tomorrow
Discussion sections tomorrow
Homework 3 due next week

Budget for invalid regrade requests

Exam 1: one week from today!