CSE 105
THEORY OF COMPUTATION

Fall 2016

http://cseweb.ucsd.edu/classes/fa16/cse105-abc/
Today's learning goals Sipser Ch 1.1-1.3

• More about NFAs with ε-transitions
• Closure properties of Regular languages using NFAs
• Regular expressions and their languages
• Design a regular expression to describe a given language
• Convert between regular expressions and automata
A language \(A \) over \(\Sigma \) is **regular** if and only if

- it is recognized by a DFA
- it is recognized by a NFA

To prove that the class of regular languages is closed under operation \(\ldots \) :

Let \(A \) be a regular language, so recognized by DFA \(M \). Build a **NFA** that recognizes the result of \(\ldots \) on \(A \). Conclude this result is also a regular language.
The regular operations

44

For A, B languages over same alphabet, define:

\[A \cup B = \{ x \mid x \in A \text{ or } x \in B \} \]

\[A \circ B = \{ xy \mid x \in A \text{ and } y \in B \} \]

\[A^* = \{ x_1 x_2 \ldots x_k \mid k \geq 0 \text{ and each } x_i \in A \} \]

How can we prove that the concatenation of two regular languages is a regular language?
Concatenation

• "Guess" some stage of input at which switch modes

Given $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$, $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ build

$N = (Q_1 \cup Q_2, \Sigma, \delta, q_1, F_2)$ with δ...
Concatenation

\[\delta(q, x) = \begin{cases} \? & \text{if } q \text{ is in } Q_1, x \text{ is in } \Sigma \\ \? & \text{if } q \text{ is in } Q_2, x \text{ is in } \Sigma \end{cases} \]
Concatenation

\[\delta(q, x) = \begin{cases} \{\delta_1(q, x)\} & \text{if } q \text{ is in } Q_1, x \text{ is in } \Sigma \\ \{\delta_2(q, x)\} & \text{if } q \text{ is in } Q_2, x \text{ is in } \Sigma \end{cases} \]
Concatenation

\[\delta(q, x) = \begin{cases} \{\delta_1(q, x)\} & \text{if } q \text{ is in } Q_1, \ x \text{ is in } \Sigma \\ \{\delta_2(q, x)\} & \text{if } q \text{ is in } Q_2, \ x \text{ is in } \Sigma \\ \{q2\} & \text{if } q \text{ is in } F_1, \ x = \varepsilon \\ \emptyset & \text{otherwise} \end{cases} \]

Correctness proof in the book (page 61)
Given $M = (Q, \Sigma, \delta, q, F)$, build

$$N = (Q \cup \{s\}, \Sigma, \delta, s, F \cup \{s\})$$

and $\delta(q, x) = \ldots$

Construction in the book (page 63)
Regular languages

To prove that a set of strings over the alphabet Σ is regular,

- Build a **DFA** whose language is this set.
- Build an **NFA** whose language is this set.
- Use the **closure properties** of the class of regular languages to construct this set from others known to be regular.
 - Union
 - Intersection
 - Complementation
 - Concatenation
 - Flip bits
 - Kleene star
Inductive application of closure

R is a **regular expression** over Σ if

1. \(R = a \), where \(a \in \Sigma \)
2. \(R = \varepsilon \)
3. \(R = \emptyset \)
4. \(R = (R_1 \cup R_2) \), where \(R_1, R_2 \) are themselves regular expressions
5. \(R = (R_1 \circ R_2) \), where \(R_1, R_2 \) are themselves regular expressions
6. \((R_1^*) \), where \(R_1 \) is a regular expression.
Regular expressions

Conventions:
- Σ is shorthand for $(0 \cup 1)$ if $\Sigma = \{0,1\}$
- Parentheses may be omitted
 - Precedence: star, then concatenation, then union
- R^+ is shorthand for RR^*, R^k is shorthand for R concatenated with itself k times
- Circle indicated concatenation may be omitted

Which of the following is **not** a regular expression over $\{0,1\}$?

A. $(\Sigma \Sigma \Sigma)^*$
B. $(\Sigma \cap 1)$
C. $(1^* \emptyset 0)$
D. $\varepsilon \varepsilon$
E. I don't know
From RegEx to Languages

The language described by a regular expression \(L(R)\):

- \(L(a) = \{a\}\) (for all \(a \in \Sigma\))
- \(L(\epsilon) = \{\epsilon\}\)
- \(L(\emptyset) = \emptyset\)
- \(L(R_1 \cup R_2) = \{w \mid w \in L(R_1) \text{ or } w \in L(R_2)\}\)
- \(L(R_1 \circ R_2) = \{w_1w_2 \mid w_1 \in L(R_1) \text{ and } w_2 \in L(R_2)\}\)
- \(L(R^*) = L(R)^*\)
Which of the following strings is not in the language described by
\[(((00)^{*}(11)) \cup 01 \)^{*}\]
A. 00
B. 01
C. 1101
D. \(\varepsilon\)
E. I don't know
Let L be the language over $\{a, b\}$ described by the regular expression
$$(a \cup \emptyset) b^*$$

Which of the following is not true about L?

A. Some strings in L have equal numbers of a's and b's
B. L contains the string $aaaaaa$
C. a's never follow b's in any string in L
D. L can also be represented by the regular expression $(ab^*)^*$
E. More than one of the above.
Regular expressions in practice

- **Compilers**: first phase of compiling transforms Strings to Tokens *keywords, operators, identifiers, literals*
 - One regular expression for each token type

- **Other software tools**: grep, Perl, Python, Java, Ruby, ...
"Regular = regular"

Theorem: A language is regular if and only if some regular expression describes it.

Lemma 1.55: If a language is described by a regular expression, then it is regular.

Lemma 1.60: If a language is regular, then it is described by some regular expression.
L(R) to NFA (to DFA) Lemma 1.55, page 67

• Idea: basic regular expressions are easy to implement as DFA, for inductive step of definition, use closure under regular operations.

• E.g.: build NFA recognizing the language described by

\[(00 \cup 11)^*\]
DFA to regular expression

Lemma 1.60, page 69

• Idea: use intermediate model GNFA whose labels are regular expressions

• E.g.: build regular expression describing language recognized by
For next time

Haskell project 2 is already out
Tuesday discussion: best to get help about Haskell
Homework 3 due tomorrow night
Midterm review session Wednesday 8pm

Budget for invalid regrade requests

Exam 1: this Friday!