Reminders

NO CONVERSATIONS about exam until Friday at 11am

Discussion section tomorrow: go over solutions of exam.
Today's learning goals

• Justify why the Pumping Lemma is true
• Apply the Pumping Lemma in proofs of nonregularity
• Identify some nonregular sets
Regular languages

To prove that a set of strings over the alphabet Σ is regular,

- Build a **DFA** whose language is this set.
- Build an **NFA** whose language is this set.
- Use the **closure properties** of the class of regular languages to construct this set from others known to be regular.
 - Union
 - Intersection
 - Complementation
 - Concatenation
 - Flip bits
 - Kleene star
Where we stand

• There exist non-regular sets.

• If we know that some sets are not regular, we can conclude others are also not regular judiciously reasoning using closure properties of class of regular languages.

• No example of a specific regular set ... yet.
Bounds on DFA

• in DFA, memory = states

• Automata can only "remember"…
 • …finitely far in the past
 • …finitely much information

• If a computation path visits the same state more than once, the machine can't tell the difference between the first time and future times it visited that state.
Example!

\[\{ 0^n1^n \mid n \geq 0 \} \]

What are some strings in this set?
What are some strings not in this set?

Compare to \(L(0^*1^*) \)

Design a DFA? NFA?
Example!

\{ 0^n1^n \mid n \geq 0 \}

What are some strings in this set?

What are some strings not in this set?

Compare to \(L(0^*1^*) \)

Design a DFA? NFA?
Pumping

- Focus on computation path through DFA
Pumping

- Focus on computation path through DFA
Pumping

- Focus on computation path through DFA

Idea: if one long string is accepted, then many other strings have to be accepted too.
Pumping Lemma

If A is a regular language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into three pieces, $s = xyz$ such that

- $|y| > 0$, and
- for each $i \geq 0$, $xy^iz \in A$,
- $|xy| \leq p$.
Pumping Lemma

If \(A \) is a regular language, then there is a number \(p \) (the pumping length) where if \(s \) is any string in \(A \) of length at least \(p \), then \(s \) may be divided into three pieces, \(s = xyz \) such that

1. \(|y| > 0 \), and
2. for each \(i \geq 0 \), \(xy^iz \in A \),
3. \(|xy| \leq p \).
Using the Pumping Lemma

Claim: The set $L = \{0^n1^n \mid n \geq 0\}$ is not regular.

Proof: Assume L is regular. So L has pumping length P.
Using the Pumping Lemma

Claim: The set $L = \{0^n1^n \mid n \geq 0\}$ is not regular.

Proof: Assume, towards a contradiction, that L is regular.
Using the Pumping Lemma

Claim: The set \(L = \{0^n1^n \mid n \geq 0\} \) is not regular.

Proof: Assume, towards a contradiction, that \(L \) is regular. Therefore, the Pumping Lemma applies to \(L \) and gives us some number \(p \), the pumping length of \(L \). In particular, this means that every string in \(L \) that is of length \(p \) or more can be "pumped".

...Idea: can we find some long string in \(L \) that can't be?
Using the Pumping Lemma

Claim: The set $L = \{0^n1^n \mid n \geq 0\}$ is not regular.

Proof: …In particular, this means that every string in L that is of length p or more can be "pumped".

Goal: pick a string s in L of length greater than or equal to p such that any division of s as $s = xyz$ with $|y| > 0$ and $|xy| \leq p$ gives some value $i \geq 0$ with xy^iz not in L. So we have a contradiction, and L is not regular.
Using the Pumping Lemma

Claim: The set \(L = \{0^n1^n \mid n \geq 0\} \) is not regular.

Proof: …

Goal: pick a string \(s \) in \(L \) of length greater than or equal to \(p \) such that any division of \(s \) as \(s = xyz \) with \(|y| > 0 \) and \(|xy| \leq p \) gives some value \(i \geq 0 \) with \(xy^iz \) not in \(L \)

Choose \(s = 0^p1^p \). Consider any \(s = xyz \) with \(|y| > 0 \), \(|xy| \leq p \).
Claim: The set $L = \{0^n1^n \mid n \geq 0\}$ is not regular.

Goal: pick a string s in L of length greater than or equal to p such that any division of s as $s = xyz$ with $|y| > 0$ and $|xy| \leq p$ gives some value $i \geq 0$ with xy^iz not in L.

Choose $s = 0^p1^p$. Consider any $s = xyz$ with $|y| > 0$, $|xy| \leq p$. Since $|xy| \leq p$, $x = 0^m$, $y = 0^n$, $z = 0^r1^p$ with $m + n + r = p$, $j > 0$.
Using the Pumping Lemma

Claim: The set \(L = \{0^n1^n \mid n \geq 0\} \) is not regular.

Proof: ...

Goal: pick a string \(s \) in \(L \) of length greater than or equal to \(p \) such that any division of \(s \) as \(s = xyz \) with \(|y|>0\) and \(|xy|\leq p\) gives some value \(i \geq 0 \) with \(xy^iz \) not in \(L \).

Choose \(s = 0^p1^p \). Consider any \(s = xyz \) with \(|y|>0\), \(|xy|\leq p\).

Since \(|xv|\leq p\), \(x=0^m \), \(y=0^n \), \(z=0^r1^p \) with \(m+n+r=p \), \(j>0 \).

Picking \(i=0 \): \(xy^iz = xz = 0^m0^r1^p = 0^{m+r}1^p \), not in \(L \)!
Using the Pumping Lemma

Claim: The set \(L = \{0^n1^n \mid n \geq 0\} \) is not regular.

Proof: …

Goal: pick a string \(s \) in \(L \) of length greater than or equal to \(p \) such that any division of \(s \) as \(s = xyz \) with \(|y| > 0 \) and \(|xy| \leq p \) gives some value \(i \geq 0 \) with \(xy^iz \) not in \(L \)

Choose \(s = 0^p1^p \). Consider any \(s = xyz \) with \(|y| > 0 \), \(|xy| \leq p \).

Since \(|xy| \leq p \), \(x = 0^m \), \(y = 0^n \), \(z = 0^r1^p \) with \(m+n+r = p \), \(j > 0 \).

Picking \(i = 0 \): \(xy^iz = xz = 0^m0^r1^p = 0^{m+r}1^p \), not in \(L \)! This is a contradiction with the Pumping Lemma applied to \(L \), so \(L \) must not be regular.
Key ingredients in proof

Claim: Language L is not regular.

Proof: Assume, towards a contradiction, that L is regular. By the Pumping Lemma, there is a pumping length p for L. Consider the string $s = \ldots$ You must pick s carefully: we want $|s| \geq p$ and s in L. *Confirm these facts as part of your proof*

Now we will prove a contradiction with the statement "s can be pumped"

Consider an arbitrary choice of x, y, z such that $s = xyz$, $|y| > 0$, $|xy| \leq p$. **This means that**... What properties are guaranteed about x, y, z?

Consider $i = \ldots$ In this case, $xy^iz = \ldots$, which is not in L, a contradiction with the Pumping Lemma applying to L and so L is not regular.
Using the Pumping Lemma

Claim: The set \(L = \{0^n1^n \mid n \geq 0\} \) is not regular.

In proof, we used \(s = 0^n1^n \) and \(i=0 \)

Claim: The set \(\{a^mb^ma^n \mid m,n \geq 0\} \) is not regular.

In proof, we used \(s = a^pb^ma^p \) and \(i=3 \)
Claim: The set \(\{ w w^R \mid w \text{ is a string over } \{0,1\} \} \) is not regular.

Proof: …Consider the string \(s = \ldots \) …

You must pick \(s \) carefully: we want \(|s| \geq p\) and \(s \) in \(L \). Now we will prove a contradiction with the statement "s can be pumped" Consider \(i=\ldots \)

Which \(s \) and \(i \) let us complete the proof?

A. \(s = 0^p0^p, \ i=2 \)
B. \(s = 0110, \ i=0 \)
C. \(s = 0^p110^p, \ i=1 \)
D. \(s = 1^p001^p, \ i=3 \)
E. I don't know
How do we choose \(i \)?

Claim: The set \(\{0^i1^j \mid i,j \geq 0 \text{ and } i \geq j \} \) is not regular.

Proof: …Consider the string \(s = \ldots \) …

You must pick \(s \) carefully: we want \(|s| \geq p\) and \(s \) in \(L \). Now we will prove a contradiction with the statement "\(s \) can be pumped" Consider \(i = \ldots \) …

Which \(s \) and \(i \) let us complete the proof?

A. \(s = 0^p1^p, i=2 \)
B. \(s = 0^p1^p, i=p \)
C. \(s = 0^p1^p, i=1 \)
D. \(s = 0^p1^p, i=0 \)
E. I don't know