Reminders

Homework 3 due tonight (solutions released soon after).

Homework 2 regrades open until Wednesday night – read comments in Gradescope. Check solutions on Piazza.

Exam 1: Thursday!
Check seating map on Piazza
Study guide on Piazza
Review session tomorrow 8pm-10pm PETER 108
One index card with notes allowed
NO CONVERSATIONS about exam until Friday at 11am
Today's learning goals

- Decide whether or not a string is described by a given regular expression
- Design a regular expression to describe a given language
- Convert between regular expressions and automata
- Justify the existence of nonregular sets
Regular languages

To prove that a set of strings over the alphabet Σ is regular,

- Build a **DFA** whose language is this set.
- Build an **NFA** whose language is this set.
- Use the closure properties of the class of regular languages to construct this set from others known to be regular.
 - Union
 - Intersection
 - Complementation
 - Concatenation
 - Flip bits
 - Kleene star
Inductive application of closure

R is a regular expression over \(\Sigma \) if

1. \(R = a \), where \(a \in \Sigma \)
2. \(R = \varepsilon \)
3. \(R = \emptyset \)
4. \(R = (R_1 \cup R_2) \), where \(R_1, R_2 \) are themselves regular expressions
5. \(R = (R_1 \circ R_2) \), where \(R_1, R_2 \) are themselves regular expressions
6. \((R_1^*) \), where \(R_1 \) is a regular expression.

\(\Sigma \) is shorthand for \((0 \cup 1)\) if \(\Sigma = \{0,1\}\), Parentheses may be omitted, \(R^* \) means \(RR^* \), \(R^k \) means \(R \) concatenated with itself \(k \) times
Syntax \rightarrow Languages

The language described by a regular expression, $L(R)$:

- $L(\Sigma\Sigma\Sigma\Sigma\Sigma^*) = \{w \in \Sigma^* | \text{there exists } k \geq 0 \text{ such that } w = a^k \text{ for some } a \in \Sigma \}$

- $L(1^*\emptyset) = \emptyset$, because $1^*\emptyset = \emptyset$

- $L(\varepsilon\varepsilon) = \{w \mid w = xy, x=\varepsilon, y=\varepsilon \} = \{\varepsilon\}$

\[\Sigma = \{0, 1\}\]
Which of the following strings is not in the language described by

\[(((00)^*(11)) \cup 01)^* \]

A. 00
B. 01
C. 1101
D. \(\epsilon \)
E. I don't know
Let L be the language over \{a,b\} described by the regular expression

$$((a \cup \emptyset) \ b^*)^*$$

Which of the following is not true about L?

A. Some strings in L have equal numbers of a's and b's
B. L contains the string aaaaaaa
C. a's never follow b's in any string in L
D. L can also be represented by the regular expression $(ab^*)^*$
E. More than one of the above.
Regular expressions in practice

- **Compilers**: first phase of compiling transforms Strings to Tokens *keywords, operators, identifiers, literals*
 - One regular expression for each token type

- **Other software tools**: grep, Perl, Python, Java, Ruby, …
"Regular = regular"

Theorem: A language is regular if and only if some regular expression describes it.

Lemma 1.55: If a language is described by a regular expression, then it is regular.

Lemma 1.60: If a language is regular, then it is described by some regular expression.
L(R) to NFA (to DFA)

- Idea: basic regular expressions are easy to implement as DFA, for inductive step of definition, use closure under regular operations.

- E.g.: build NFA recognizing the language described by $(00 \cup 11)^*$
DFA to regular expression

- Idea: use intermediate model GNFA whose labels are regular expressions

- E.g.: build regular expression describing language recognized by
All roads lead to … regular sets?

Are there any languages over \(\{0,1\}\) that are not regular?

A. Yes: a language that is recognized by an NFA but not any DFA.

B. Yes: there is some infinite language of strings over \(\{0,1\}\) that is not described by any regular expression.

C. No: all languages over \(\{0,1\}\) are regular because that's what it means to be a language.

D. No: for each set of strings over \(\{0,1\}\), some DFA recognizes that set.

E. I don't know.
Counting

• Fact: a countable union of countable sets is countable.

• Fact: \(\{0,1\}^* \) is countably infinite. \(X^* \) is countably infinite when \(X \) is finite.

• Fact: the set of subsets of a countably infinite sets is uncountable.

• Fact: there are countably many DFA with \(\Sigma=\{0,1\} \)

• Fact: there are countably many regular languages over \(\{0,1\} \)
Counting

- Fact: a countable union of countable sets is countable.
- Fact: \(\{0,1\}\) is countably infinite. \(X\) is countably infinite when \(X\) is finite.
- Fact: the set of subsets of a countably infinite sets is uncountable.
- Fact: there are countably many DFA with \(\Sigma = \{0,1\}\).
- Fact: there are countably many regular languages over \(\{0,1\}\). Uncountably many languages over \(\{0,1\}\)
- Countably many regular languages over \(\{0,1\}\)
Proving nonregularity

How can we prove that a set is non-regular?
A. Try to design a DFA that recognizes it and, if the first few attempts don't work, conclude there is none that does.
B. Prove that it's a strict subset of some regular set.
C. Prove that it's the union of two regular sets.
D. Prove that its complement is not regular.
E. I don't know.
Where we stand

• There exist non-regular sets.

• If we know that some sets are not regular, we can conclude others are also not regular judiciously reasoning using closure properties of class of regular languages.

• No example of a specific regular set ... yet.
Bounds on DFA

- in DFA, memory = states

- Automata can only "remember"
 - …finitely far in the past
 - …finitely much information

- If a computation path visits the same state more than once, the machine can't tell the difference between the first time and future times it visited that state.
For next time

Homework 3 due tonight (solutions released soon after)

Exam 1: Thursday!
Check **seating map** on Piazza
Study guide on Piazza
Review session tomorrow 8pm-10pm PETER 108
To prepare for Thursday

• Review notes and definitions: create index card
• Work problems yourself, using only index card
• Review solutions; read others' solutions; compare and critique
• Sleep, eat, exercise
• Find assigned seat, organize ID card