Today's learning goals

- More on closure properties of regular languages
 - Complement (last time)
 - Union, Intersection, …
 - Concatenation, Star, Reverse: how?
- Non-determinism
 - Define Non-deterministic Finite Automata (NFA)
 - Next time: Using NFAs to prove closure properties
The class of regular languages over fixed alphabet Σ is closed under the union operation.

Proof: Let A_1, A_2 be any two regular languages over Σ. WTS that $A_1 \cup A_2$ is regular.

Goal: build a machine that recognizes $A_1 \cup A_2$.
Union

Sipser Theorem 1.25 p. 45

Goal: build a machine that recognizes $A_1 \cup A_2$.

Strategy: use machines that recognize each of A_1, A_2.

HOW?
Theorem: The class of regular languages over fixed alphabet Σ is closed under the union operation.

Proof: Let A_1, A_2 be any two regular languages over Σ. Given $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ such that $L(M_1) = A_1$ and $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ such that $L(M_2) = A_2$ and WTS that $A_1 \cup A_2$ is regular.

Define $M = (?, \Sigma, \delta, ?, ?)$
Theorem: The class of regular languages over fixed alphabet Σ is closed under the union operation.

Proof: Let A_1, A_2 be any two regular languages over Σ. Given $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ such that $L(M_1) = A_1$ and $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ such that $L(M_2) = A_2$ and WTS that $A_1 \cup A_2$ is regular.

Define $M = (Q_1 \times Q_2, \Sigma, \delta, ?, ?)$.
Theorem: The class of regular languages over fixed alphabet Σ is closed under the union operation.

Proof: Let A_1, A_2 be any two regular languages over Σ. Given $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ such that $L(M_1) = A_1$ and $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ such that $L(M_2) = A_2$ and \textbf{WTS} that $A_1 \cup A_2$ is regular.

Define $M = (Q_1 \times Q_2, \Sigma, \delta, ?, ?)$

What should be the initial state of M?

A. q_0
B. q_1
C. q_2
D. (q_1, q_2)
E. I don't know.
Theorem: The class of regular languages over fixed alphabet Σ is closed under the union operation.

Proof: Let A_1, A_2 be any two regular languages over Σ. Given $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ such that $L(M_1) = A_1$ and $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ such that $L(M_2) = A_2$ and WTS that $A_1 \cup A_2$ is regular.

Define $M = (Q_1 \times Q_2, \Sigma, \delta, (q_1, q_2), ?)$

When r is a state in M_1, s is a state in M_2, and x is in Σ, then $\delta((r, s), x) =$

A. (r, s)
B. $(\delta(r, x), \delta(s, x))$
C. $(\delta_1(r, x), s)$
D. $(\delta_1(r, x), \delta_2(s, x))$
E. I don't know.
Theorem: The class of regular languages over fixed alphabet Σ is closed under the union operation.

Proof: Let A_1, A_2 be any two regular languages over Σ. Given $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ such that $L(M_1) = A_1$ and $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ such that $L(M_2) = A_2$. WTS that $A_1 \cup A_2$ is regular.

Define $M = (Q_1 \times Q_2, \Sigma, \delta, (q_1, q_2), F)$, where

A. $F_1 \times F_2$
B. $\{ (r,s) | r \text{ is in } F_1 \text{ and } s \text{ is in } F_2 \}$
C. $\{ (r,s) | r \text{ is in } F_1 \text{ or } s \text{ is in } F_2 \}$
D. $F_1 \cup F_2$
E. I don't know.
Proof: Let A_1, A_2 be any two regular languages over Σ. Given $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ such that $L(M_1) = A_1$ and $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ such that $L(M_2) = A_2$. WTS that $A_1 \cup A_2$ is regular. Define $M = (Q_1 \times Q_2, \Sigma, \delta, (q_1, q_2), \{(r, s) \in Q_1 \times Q_2 \mid r \in F_1 \text{ or } s \in F_2\})$ with $\delta((r, s), x) = (\delta_1(r, x), \delta_2(s, x))$ for each (r, s) in $Q_1 \times Q_2$ and x in Σ. Claim that $L(M) = A_1 \cup A_2$. Proof...
Intersection

• How would you prove that the class of regular languages is closed under intersection?
• Can you think of more than one proof strategy?

\[A \cap B = \{ x \mid x \text{ in } A \text{ and } x \text{ in } B \} \]
Payoff

\{ w \mid w \text{ contains neither the substrings } \text{aba nor } \text{baab}\}

Is this a regular set?
Payoff

\{ w \mid w \text{ contains neither the substrings } aba \text{ nor } baab \}

Is this a regular set?

A = \{ w \mid w \text{ contains } aba \text{ as a substring} \}
B = \{ w \mid w \text{ contains } baab \text{ as a substring} \}

\overline{A} \cap \overline{B} = \overline{A \cup B}
Sample closure proofs

• The class of regular languages over \{0,1\} is closed under the FlipBits operation, where

\[
\text{FlipBits}(L) = \{ w \mid w \text{ is obtained from some } w' \text{ in } L \text{ by flipping each 0 in } w \text{ to 1, and each 1 to 0} \}
\]

• The class of regular languages of \{a,b,z\} is closed under the DeleteWordsWithZ operation, where

\[
\text{DeleteWordsWithZ}(L) = \{ w \mid w \text{ is in } L \text{ and } w \text{ doesn't contain } z \}
\]
General proof structure/strategy

Theorem: For any L over Σ, if L is regular then [the result of some operation on L] is also regular.

Proof:

Given name variables for sets, machines assumed to exist.

WTS state goal and outline plan.

Construction using objects previously defined + new tools working towards goal. Give formal definition and explain.

Correctness prove that construction works.

Conclusion recap what you've proved.
The regular operations Sipser Def 1.23 p. 44

For A, B languages over same alphabet, define:

\[A \cup B = \{ x | x \in A \text{ or } x \in B \} \]

\[A \circ B = \{ xy | x \in A \text{ and } y \in B \} \]

\[A^* = \{ x_1 x_2 \ldots x_k | k \geq 0 \text{ and each } x_i \in A \} \]

How can we prove that the concatenation of two regular languages is a regular language?
Nondeterministic finite automata

• "Guess" some stage of input at which switch modes

Input

M1 \rightarrow M2

• "Guess" one of finite list of criteria to meet

Input

M1 \rightarrow M2

Accept if either (or both) accepts
Example: choose between options

\[\{ w \in \{0,1\}^* \mid w \text{ has at least two 0s or at least two 1s} \} \]
Example: switch modes

\{ \text{w in } \{0,1\}^* \mid \text{w ends with } 010 \}
Differences between NFA and DFA

- **DFA**: unique computation path for each input
- **NFA**: allow several (or zero) alternative computations on *same input*
 - $\delta(q,x)$ may specify *more than one* possible next states
 - ϵ transitions allow the machine to *transition between states spontaneously*, without consuming any input symbols
A nondeterministic finite automaton is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\) where

1. \(Q\) is a finite set called the states
2. \(\Sigma\) is a finite set called the alphabet
3. \(\delta : Q \times \Sigma \rightarrow \mathcal{P}(Q)\) is the transition function
4. \(q_0 \in Q\) is the start state
5. \(F \subseteq Q\) is the set of accept states.

Which piece of the definition of NFA means there might be more than one possible next state from a given state, when reading symbol \(x\) from the alphabet?

A. Line 2, the size of \(\Sigma\)
B. Line 3, the domain of \(\delta\)
C. Line 3, the codomain of \(\delta\)
D. Line 5, that \(F\) is a set
E. I don’t know.
Tracing NFA execution

- Is 0 accepted?
- Is 1 accepted?
- Is 0101 accepted?
- Is 110 accepted?
- Is the empty string accepted?
Acceptance in an NFA

An NFA \((Q, \Sigma, \delta, q_0, F)\) accepts a string \(w\) in \(\Sigma^*\) iff we can write \(w = y_1y_2 \cdots y_m\) where each \(y_i \in \Sigma_e\) and **there is** a sequence of states \(r_0, \ldots, r_m \in Q\) such that

1. \(r_0 = q_0\)

2. \(r_{i+1} \in \delta(r_i, y_{i+1})\) for each \(i = 0, \ldots, m - 1\)

3. \(r_m \in F\).
More differences between NFA and DFA

- **DFA**: unique computation path for each input
- **NFA**: allow several (or zero) alternative computations on same input
 - $\delta(q,x)$ may specify *more than one* possible next states
 - ε transitions allow the machine to *transition between states spontaneously*, without consuming any input symbols

Types of components of formal definition

- **DFA** $\delta : Q \times \Sigma \rightarrow Q$
- **NFA** $\delta : Q \times \Sigma_\varepsilon \rightarrow \mathcal{P}(Q)$
Similarities between DFA and NFA

• If L is a language recognized by a DFA, is there some NFA that recognizes it?

A. Yes
B. No
C. Depends on L
D. I don't know.
Similarities between DFA and NFA

• If L is a language recognized by an NFA, is there some DFA that recognizes it (aka is it regular)?

A. Yes
B. No
C. Depends on L
D. I don't know.
Next steps

• Defining NFA to recognize specific languages.
• Showing that NFA and DFA are equally expressive
• Using NFA to prove closure of class of regular languages under (the rest of the) regular operations
For next time

Homework 2 due on Tuesday (tomorrow!)
Haskell 1 due on Friday
My office hours: Today 10am-12pm.

Regrade requests for HW1 must be submitted by noon on Wednesday. **Budget for invalid regrade requests**