Today’s lecture

• Reductions, Reductions, Reductions!
• Did I say reductions?
• More reductions
• Reading: Chapter 5
Reduction from A to B

• A < B, “If B is decidable, then A is decidable”

• Proof:
 – Assume A is decidable
 – Show that B is also decidable

• Proof methods:
 – Using closure properties of decidable languages: transform A into B
 – Let M be a decider for A. Use M to build a decider for B

• Notice: We do not need to know if A is decidable
Getting the direction right

• Different ways to say/write the same thing:
 - “A (Turing) reduces to B”
 - “A < B”
 - If B is decidable, then A is decidable
 - Less common: “B reduces from A”

• A < B: “Hardness of A < Hardness of B”
 - Decidable < Decidable
 - Decidable < Undecidable
 - Undecidable < Undecidable
Applying Reductions

• Reduction from A to B: \(A < B \)

• Proving a reduction:
 – Assume B is decidable
 – Show A is decidable

• Using reductions: \(A < B \)
 – “Hardness of A < Hardness of B”
 – Can be used to show that A is decidable, or B is undecidable
Applying Reductions

- Reduction from A to B: $A < B$
- Proving a reduction:
 - Assume B is decidable
 - Show A is decidable
- Using reductions: $A < B$
 - “Hardness of A < Hardness of B”
 - Can be used to show that A is decidable, or B is undecidable

Goal: Prove that A is **decidable**
What should you do?
A) Show $A < A$
B) Show $B < A$ for some decidable B
C) Show $B < A$ for some undecidable B
D) Show $A < B$ for some decidable B
Applying Reductions

- Reduction from A to B: \(A < B \)
- Proving a reduction:
 - Assume B is decidable
 - Show A is decidable
- Using reductions: \(A < B \)
 - “Hardness of A < Hardness of B”
 - Can be used to show that A is decidable, or B is undecidable

Goal: Prove that A is undecidable
What should you do?
A) Show A<A
B) Show B<A for some decidable B
C) Show B<A for some undecidable B
D) Show A<B for some undecidable B
Some example languages

- **Acceptance problem:**
 - $A_{DFA} = \{ <M,w> | M \text{ is a DFA and } M(w) \text{ accepts} \}$
 - $A_{TM} = \{ <M,w> | M \text{ is a TM and } M(w) \text{ accepts} \}$

- **Emptyness problem:**
 - $E_{DFA} = \{ <M> | M \text{ is a DFA and } L(M) \text{ is the empty set} \}$
 - $E_{TM} = \{ <M> | M \text{ is a TM and } L(M) \text{ is the empty set} \}$

- **Equivalence problem:**
 - $EQ_{DFA} = \{ <M,M'> | M \text{ and } M' \text{ are DFAs and } L(M) = L(M') \}$
Some problems on CFG

- $\text{EQ}_{\text{CFG}} = \{ <G_1, G_2> \mid G_1, G_2 \text{ CFG s.t. } L(G_1) = L(G_2) \}$
- $\text{SUB}_{\text{CFG}} = \{ <G_1, G_2> \mid G_1, G_2 \text{ CFG s.t. } L(G_1) \subseteq L(G_2) \}$
- $\text{SUP}_{\text{CFG}} = \{ <G_1, G_2> \mid G_1, G_2 \text{ CFG s.t. } L(G_1) \supseteq L(G_2) \}$

Can you give reductions between any two of these problems? In what direction?
- $\text{EQ}_{\text{CFG}} < \text{SUB}_{\text{CFG}}$?
- $\text{SUB}_{\text{CFG}} < \text{SUP}_{\text{CFG}}$?
- $\text{SUP}_{\text{CFG}} < \text{EQ}_{\text{CFG}}$?
Reduction: $\text{SUB}_{\text{CFG}} < \text{SUP}_{\text{CFG}}$

- $\text{SUB}_{\text{CFG}} = \{ <G_1, G_2> | G_1, G_2 \text{ CFG s.t. } L(G_1) \subseteq L(G_2) \}$
- $\text{SUP}_{\text{CFG}} = \{ <G_1, G_2> | G_1, G_2 \text{ CFG s.t. } L(G_1) \supseteq L(G_2) \}$
- Assume P decides SUP_{CFG}
- $P'(<G_1, G_2>) = P(<G_2, G_1>)$

Which statement is false?

A) P' is a decider
B) P' recognizes SUB_{CFG}
C) P' does not decide SUP_{CFG}
D) P' decides the complement of SUP_{CFG}
Reduction: $\text{EQ}_{\text{CFG}} < \text{SUB}_{\text{CFG}}$

- $\text{SUB}_{\text{CFG}} = \{<G_1,G_2> | G_1,G_2 \text{ CFG s.t. } L(G_1) \subseteq L(G_2) \}$
- $\text{EQ}_{\text{CFG}} = \{<G_1,G_2> | G_1,G_2 \text{ CFG s.t. } L(G_1) = L(G_2) \}$
- Assume P decides SUB_{CFG}
- $P'(G_1,G_2) =$
 1. Run $P(G_1,G_2)$
 2. Run $P(G_2,G_1)$
 3. Accept iff both accepted

Which statement is false?

A) P' is a decider
B) P' recognizes SUB_{CFG}
C) P' decides $\text{SUB}_{\text{CFG}} \cap \text{SUP}_{\text{CFG}}$
D) P' recognizes EQ_{CFG}
Reduction: \(\text{SUP}_{\text{CFG}} < \text{EQ}_{\text{CFG}} \)

- \(\text{SUP}_{\text{CFG}} = \{ <G_1,G_2> | G_1,G_2 \text{ CFG s.t. } L(G_2) \subseteq L(G_1) \} \)
- \(\text{EQ}_{\text{CFG}} = \{ <G_1,G_2> | G_1,G_2 \text{ CFG s.t. } L(G_1) = L(G_2) \} \)
- Assume \(P \) decides \(\text{EQ}_{\text{CFG}} \)
- \(P'(<G_1,G_2>) = \)
 1. Let \(L(G) = L(G_1) \cup L(G_2) \)
 2. Run \(P(<G?,G?>) \)
 3. Accepts iff \(P \) accepts

What input should \(P' \) pass to \(P \) in order to decide \(\text{SUP}_{\text{CFG}} \)?

A) \(<G_1,G_2> \)
B) \(<G_2,G_1> \)
C) \(<G_1,G> \)
D) \(<G_2,G> \)
E) None of the above works
Undecidable Problems

- \(\text{ALL}_{\text{CFG}} = \{ <G> \mid G \text{ is a CFG and } L(G) = \Sigma^* \} \)
- Sipser Theorem 5.13: \(\text{ALL}_{\text{CFG}} \) is undecidable
- What can you say about \(\text{EQ}_{\text{CFG}} \)?
 - \(\text{ALL}_{\text{CFG}} < \text{EQ}_{\text{CFG}} \)
 - Assume \(P \) decides \(\text{EQ}_{\text{CFG}} \)
 - Let \(P'(<G>) = P(<G, \ "S\rightarrow aS | bS | \ldots | \varepsilon" \ >) \)
 - \(P' \) decides \(\text{ALL}_{\text{CFG}} \)
 - \(\text{EQ}_{\text{CFG}} \) is undecidable
Undecidable Problems

• \(\text{ALL}_{\text{CFG}} = \{ \langle G \rangle \mid G \text{ is a CFG and } L(G) = \Sigma^* \} \)

• Sipser Theorem 5.13: \(\text{ALL}_{\text{CFG}} \) is undecidable

• What can you say about \(\text{EQ}_{\text{CFG}} \)?
 - \(\text{ALL}_{\text{CFG}} < \text{EQ}_{\text{CFG}} \)
 - Assume \(P \) decides \(\text{EQ}_{\text{CFG}} \)
 - Let \(P'(\langle G \rangle) = P(\langle G, \text{"S→ aS | bS | … | ε"} \rangle) \)
 - \(P' \) decides \(\text{ALL}_{\text{CFG}} \)
 - \(\text{EQ}_{\text{CFG}} \) is undecidable

SUB \(\text{CFG} \) is also undecidable. Which of the following is a valid justification?

A) \(\text{SUB}_{\text{CFG}} < \text{EQ}_{\text{CFG}} \)
B) \(\text{SUB}_{\text{CFG}} < \text{SUP}_{\text{CFG}} \)
C) \(\text{EQ}_{\text{CFG}} < \text{SUB}_{\text{CFG}} \)
D) \(\text{SUB}_{\text{CFG}} < \text{ALL}_{\text{CFG}} \)
E_{TM} is undecidable

- $A_{TM} = \{ <M,w> | M \text{ is a TM and } M(w) \text{ accepts} \}$
- $E_{TM} = \{<M> | M \text{ is a TM and } L(M) \text{ is empty} \}$
- We already proved that A_{TM} is undecidable
- How can we prove that E_{TM} is undecidable?
 - Assume E_{TM} is undecidable
 - Derive a contradiction. E.g., show that A_{TM} is decidable
- Formally: Reduce $A_{TM} < E_{TM}$
E_{TM} is undecidable: Proof

- $A_{TM} = \{ <M,w> \mid M$ is a TM and $M(w)$ accepts $\}$
- $E_{TM} = \{ <M> \mid M$ is a TM and $L(M)$ is empty $\}$

• Assume E_{TM} is decided by P

• Define $P'(M,w) =$
 1. Build $M'(x) =$ “if ($x == w$) then $M(x)$ else reject”
 2. Run $P(<M'>)$
 3. If P accepts, then reject. If P rejects, then accept.

• P' decides A_{TM}, contradiction! (Sipser Theorem 5.2)
E_{TM} is undecidable:

- $A_{\text{TM}} = \{ <M,w> \mid M \text{ is a TM and } M(w) \text{ accepts} \}$
- $E_{\text{TM}} = \{<M> \mid M \text{ is a TM and } L(M) \text{ is empty} \}$

• Assume E_{TM} is decided by P

• Define $P'(<M,w>) =$
 1. Build $M'(x) = \text{"if } (x == w) \text{ then } M(x) \text{ else reject"}$
 2. Run $P(<M'>)$
 3. If P accepts, then reject. If P rejects, then accept.

• P' decides A_{TM}, contradiction!

What can you say about $L(M')$?

A) $L(M') = L(M)$
B) $L(M') = \{x \mid x == w\}$
C) $L(M') \subseteq \{w\}$
D) $w \in L(M')$
E) None of the above
\(\text{E}_{\text{TM}}: \text{Alternative Proof} \)

- Assume \(\text{E}_{\text{TM}} \) is decided by \(P \)
- Let \(P'(\langle M, w \rangle) = \neg(P(\langle M' \rangle)) \)

 where \(M'(x) = M(w) \)

 // discard \(x \), and run \(M \) on \(w \)!

- \(P' \) decides \(\text{A}_{\text{TM}} \), contradiction!

 ✔ If \(\langle M, w \rangle \) is in \(\text{A}_{\text{TM}} \), then \(L(M') = \Sigma^* \) and \(P(\langle M' \rangle) \) rejects

 ✗ If \(\langle M, w \rangle \) is not in \(\text{A}_{\text{TM}} \), then \(L(M') = \{\} \) and \(P(\langle M' \rangle) \) accepts
Next Time

- Happy Thanksgiving!
- **Reading**: Sipser Chapter 5
- **HW7** due Tue Nov 29
- One more week of classes and the Finals!