CSE 105
THEORY OF COMPUTATION

Fall 2016

http://cseweb.ucsd.edu/classes/fa16/cse105-abc/
Today's learning goals Sipser Ch 3

• Introduction to Turing Machines
• Configurations and computations
• Deciders and Recognizers
Turing machines

- Unlimited input
- Unlimited (read/write) memory
- Unlimited time
Formal definition of TM

A Turing machine is a 7-tuple \((Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})\) where \(Q, \Sigma, \Gamma\) are all finite sets and

1. \(Q\) is the set of states
2. \(\Sigma\) is the input alphabet (not containing blank symbol)
3. \(\Gamma\) is the tape alphabet (including blank symbol as well as all symbols in \(\Sigma\))
4. \(\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}\) is the transition function
5. \(q_0 \in Q\) is the start state
6. \(q_{\text{accept}} \in Q\) is the accept state
7. \(q_{\text{reject}} \in Q\) is the reject state
Turing Machine example

- \(L = \{w#w \mid w \in \{a,b\}^*\} \) (No CFG/PDA!)
- Informal description: \(\Gamma = \{a,b,\#,c,[_]\} \)
 1) If input is #
 1) Move right skipping all c’s
 2) If input is [_], then accept, else reject
 2) Read a or b, store in internal state, and change it to c
 3) Move right until read #
 4) Move right skipping all c’s
 5) Read a or b, matching the symbol read in step 1.
 1) If mismatch \(\rightarrow \) reject
 2) If match, overwrite with c
 6) Move left until read #
 7) Move left until read c
 8) Go back to 1).
Turing Machine (formal)

- \(L = \{ w \# w \mid w \text{ in } \{a,b\}^* \} \) (No CFG/PDA!)
- Draw state diagram in JFLAP
Turing Machine Computations

- Configuration: all the information store by the system at any point during computation
 - Internal state (Q)
 - Tape content (Γ^*)
 - Position of tape head

- Formally: (α,q,\beta) in $\Gamma^* \times Q \times \Gamma^*$
 - q: internal state
 - α: tape content to the left of tape head
 - β: tape content from tape head to the right
TM Computations

- Fix TM $M = (Q, \Sigma, \Gamma, \delta, q_s, q_a, q_r)$

- Computation of M on input w:
 - Sequence of configurations
 - Start from initial configuration $C_0 = (\varepsilon, q_s, w)$
 - Move from one configuration C_i to the next C_{i+1} according to δ
 - If try to move Left of first tape symbol, stay put
 - If try to move Right of last tape symbol, extend tape with $[_]$ (blank)
 - Until reaching halting configuration (\ldots, q_a, \ldots) or (\ldots, q_r, \ldots)

- Input is accepted if final state is q_a
- Input is rejected if final state is q_r
Computation: Example

• Assume
 - TM is in configuration (0110,q,111)
 - δ(q,0)=(p,1,L) and δ(q,1)=(p,1,R)

• The next configuration is
 A) (0110,p,111)
 B) (011,p,0111)
 C) (01100,p,11)
 D) (01101,p,11)
 E) I don’t know
TM Computations

- Fix TM $M = (Q, \Sigma, \Gamma, \delta, q_s, q_a, q_r)$

- Computation of M on input w:
 - Sequence of configurations
 - Start from initial configuration $C_0 = (\varepsilon, q_s, w)$
 - Move from one configuration C_i to the next C_{i+1} according to δ
 - Until reaching halting configuration (\ldots, q_a, \ldots) or (\ldots, q_r, \ldots)

- Input is accepted if final state is q_a

- Input is rejected if final state is q_r

What is the maximum length of a computation?

A) Same as input length
B) At most length of input
C) May be longer than input, but it is always finite
D) May be finite or infinite
E) I don’t know
Fix TM $M = (Q, \Sigma, \Gamma, \delta, q_s, q_a, q_r)$

Computation of M on input w:
- Sequence of configurations
- Start from initial configuration $C_0 = (\varepsilon, q_s, w)$
- Move from one configuration C_i to the next C_{i+1} according to δ
- Until reaching halting configuration \ldots, q_a, \ldots or \ldots, q_r, \ldots

Input is accepted if final state is q_a

Input is rejected if final state is q_r

Does M need to read the whole input w before halting?

A) Yes, computation terminates only after reading w
B) Only before accepting w
C) No. M may accept or reject without reading w entirely
D) I don’t know
TM Computations

- Fix TM $M=(Q, \Sigma, \Gamma, \delta, q_s, q_a, q_r)$.

- Computation of M on input w:
 - Sequence of configurations
 - Start from initial configuration $C_0=(\varepsilon, q_s, w)$
 - Move from one configuration C_i to the next C_{i+1} according to δ
 - Until reaching halting configuration (\ldots, q_a, \ldots) or (\ldots, q_r, \ldots)

- Input is accepted if final state is q_a

- Input is rejected if final state is q_r

Which of the following is true?

A) Computation may visit both q_a and q_r
B) Computation may visit q_a more than once
C) Computation may visit q_b more than once
D) Computation may visit q_s more than once
E) None of the above
Language of a TM

- $L(M) = \{ w \mid M \text{ accepts } w \}$
- M may reject or loop on strings not in $L(M)$
- A language X is **recognizable** if $X = L(M)$ for some TM M
- A TM M is a decider if $M(w)$ halts on every input w
- A language X is **decidable** is $X = L(M)$ for some decider M
Language of a TM

- $L(M) = \{ w \mid M \text{ accepts } w \}$
- M may reject or loop on strings not in $L(M)$
- A language X is \textit{recognizable} if $X = L(M)$ for some TM M
- A TM M is a decider if $M(w)$ halts on every input w
- A language X is \textit{decidable} if $X = L(M)$ for some decider M

Which of the following is true?

A) If X is decidable, then X is recognizable
B) If X is recognizable, then X is recognizable
C) If X is decidable, then X is decidable
D) I don’t know
TM models

- TM with doubly infinite tape
- TM with 2-dimensional tape
- 2-Tape TM
- K-Tape TM
- Non-deterministic TM
- Theorem: All above models are equivalent
Equivalence between models

• Consider two models, e.g., TM and 2TM

• What does it mean for TM and 2TM to be equivalent?
 - Any TM M can be transformed into a 2TM M' such that $L(M) = L(M')$
 - Any 2TM M' can be transformed into a TM M such that $L(M) = L(M')$

• Strengthen: M terminates iff M' terminates
Church-Turing Thesis

- Theorem: TM, 2TM, k-TM, NTM, etc. are all equivalent
- Theorm: TM, λ-calculus, java, etc. are all equivalent
- Church-Turing thesis: any “reasonable” model of computation is equivalent to the TM
Reminders

- **Reading**: Sipser Chapter 3
- **HW5** due tonight
- **Review for Exam 2**
 - Tuesday Nov 1 TBA
- **Exam 2** Wednesday Nov 2
 - Seating chart: see Piazza
 - Study guide: see Piazza
- **Haskell 3** on CFG is out. Due Nov 7.