1 Concentration of Averages

Concentration of measure is very useful in showing bounds on the errors of machine-learning algorithms. We will begin with a basic concentration inequality, which shows the concentration of measure of averages of a number of independent random variables.

Theorem 1 (Hoeffding’s Inequality) Let \(X_1, \ldots, X_n \) be independent and bounded random variables such that \(a_i \leq X_i \leq b_i \). Then,

\[
\Pr \left(\left| \frac{X_1 + \ldots + X_n}{n} - \mathbb{E} \left(\frac{X_1 + \ldots + X_n}{n} \right) \right| \geq \epsilon \right) \leq 2e^{-\epsilon^2 n^2 / \sum_{i=1}^{n} (b_i - a_i)^2}
\]

Example 1: Estimating the Bias of a Coin. Consider a coin with bias \(p \), and suppose we toss it \(n \) times. If \(X \) is the number of heads obtained, Hoeffding’s Inequality gives us:

\[
\Pr (|X - p| \geq \epsilon) \leq 2e^{-\epsilon^2 n}
\]

2 Concentration of Lipschitz Functions

Hoeffding’s Inequality shows that the mean of \(n \) independent random variables is tightly concentrated around their expectation. It turns out that similar concentration bounds can be obtained for smooth or Lipschitz functions.

Definition 1 A function \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) is said to be \(\lambda \)-Lipschitz wrt to the \(L_p \)-metric if for all \(x \) and \(y \),

\[
|f(x) - f(y)| \leq \lambda \|x - y\|_p
\]

We will only consider functions which are Lipschitz with respect to the \(L_1 \) and the \(L_2 \) metrics. For example, if \(x = (x_1, \ldots, x_n) \) then the function \(f_n(x) = \frac{1}{n} (x_1 + \ldots + x_n) \) is \(\frac{1}{n} \)-Lipschitz with respect to the \(L_1 \) metric.

Theorem 2 (Concentration of Lipschitz Functions wrt \(L_1 \)-metric) Let \(X_1, \ldots, X_n \) be independent and bounded random variables such that \(a_i \leq X_i \leq b_i \), and let \(f \) be a function. If \(f \) is \(\lambda \)-Lipschitz with respect to the \(L_1 \) metric, then,

\[
\Pr (|f(X_1, \ldots, X_n) - \mathbb{E}[f(X_1, \ldots, X_n)]| \geq \epsilon) \leq 2e^{-\epsilon^2 / \lambda^2 \sum_{i=1}^{n} (b_i - a_i)^2}
\]

Concentration bounds can be shown for functions which are \(\lambda \)-Lipschitz with respect to the \(L_2 \) metric.
Theorem 3 (Concentration of Lipschitz Function wrt L_2-metric) Let S^{d-1} be the surface of the unit sphere in $(d-1)$ dimensions, and let μ be the uniform measure on S^{d-1}. Let $f : \mathbb{R}^n \to \mathbb{R}$ be λ-Lipschitz wrt the L_2 metric. Then,

$$
\mu \left(f \geq \text{median}(f) + \epsilon \right) \leq 4e^{-\epsilon^2d/2\lambda^2}
$$

Example 2: Concentration of Volume on the Sphere. Let $X \sim \mu$; let w be any fixed unit vector, and let f be the function:

$$
f(X) = \langle X, w \rangle
$$

Then f is 1-Lipschitz wrt the L_2 metric, because:

$$
|f(x) - f(y)| = \langle x - y, w \rangle \leq \|w\| \cdot \|x - y\| \leq \|x - y\|
$$

Observe that $\text{median}(f) = 0$ due to symmetry. Applying the theorem above on $f(X)$ and $-f(X)$, we get that for any vector w,

$$
\mu (|\langle w, X \rangle| > \epsilon) \leq 8e^{-2\epsilon^2d}
$$

This implies that most of the volume of a d-dimensional sphere is concentrated around the equator.

We will next prove Hoeffding’s Inequality, but first we need to recall a few basic probability and geometric facts.

3 Some Basic Facts

Fact 1 (Linearity of Expectation) For any two random variables X and Y,

$$
E[X + Y] = E[X] + E[Y]
$$

Fact 2 (Variance) For a random variable X,

$$
\text{Var}(X) = E[(X - E[X])^2] = E[X^2] - (E[X])^2
$$

Fact 3 (Linearity of Variance) If X_1, \ldots, X_n are n independent random variables, then:

$$
\text{Var}(X_1 + \ldots + X_n) = \text{Var}(X_1) + \text{Var}(X_2) + \ldots + \text{Var}(X_n)
$$

Fact 4 (Union Bound) For any two events A and B,

$$
\Pr(A \cup B) = \Pr(A) + \Pr(B)
$$

Fact 5 (Jensen’s Inequality) If f is a convex function, then

$$
E[f(X)] \geq f(E[X])
$$

4 Some Basic Concentration Inequalities

As an exercise, we first look at two (weaker) concentration inequalities and their proofs.

Theorem 4 (Markov’s Inequality) For any random variable X, and any $a \geq 0$,

$$
\Pr(|X| \geq a) \leq \frac{E[X]}{a}
$$
Proof: Observe that $|X| \geq a \cdot 1_{|X| \geq a}$. Taking expectations on both sides, we get the inequality. □

Markov’s Inequality in turn can be applied to prove stronger concentration inequalities.

Theorem 5 (Chebyshev’s Inequality) For any random variable X,

$$\Pr(|X - \mathbb{E}[X]| \geq a) \leq \frac{\text{Var}(X)}{a^2}$$

Proof: Let $Z = (X - \mathbb{E}[X])^2$. Applying Markov’s Inequality to Z, we get:

$$\Pr(|X - \mathbb{E}[X]| \geq a) = \Pr(Z \geq a^2) \leq \frac{\mathbb{E}[(X - \mathbb{E}[X])^2]}{a^2} = \frac{\text{Var}(X)}{a^2}$$

□

Usually Chebyshev’s Inequality gives a stronger bound than Markov’s Inequality. However, Markov’s Inequality also requires less of the random variable – it only requires $\mathbb{E}[X]$ to be finite, whereas Chebyshev’s Inequality requires both $\mathbb{E}[X]$ and $\text{Var}(X)$ to be finite.

Example 3: Symmetric Random Walks on the Line. Consider the following stochastic process: we start at the origin, and at each time step t, we take a step to the left w.p. $1/2$ and to the right w.p. $1/2$. What is our position after n time steps?

More formally, for each time step t, we define a random variable X_t to represent each step of the walk as follows.

- $X_t = +1$, with probability $1/2$
- $X_t = -1$, with probability $1/2$

Since we start at the origin, the position S_n after n steps is defined as:

$$S_n = X_1 + X_2 + \ldots + X_n$$

Observe that using the linearity of expectation, $\mathbb{E}[S_n] = 0$, and using the linearity of variance (as the steps X_t are independent), $\text{Var}(S_n) = n$. If we apply Markov’s Inequality on $|S_n|$ we get that for $c > 1$,

$$\Pr(|S_n| \geq c\sqrt{n}) \leq \frac{\mathbb{E}[|S_n|]}{c\sqrt{n}} \leq \frac{\sqrt{\mathbb{E}[S_n^2]}}{c\sqrt{n}} \leq \frac{\sqrt{\text{Var}(S_n)}}{c\sqrt{n}} \leq \frac{1}{c}$$

Applying Chebyshev’s Inequality,

$$\Pr(|S_n| \geq c\sqrt{n}) \leq \frac{\text{Var}(S_n)}{c^2 n} \leq \frac{1}{c^2}$$

Thus Chebyshev’s Inequality provides a better bound.

5 Proof of Hoeffding’s Inequality

In the proof of Chebyshev’s Inequality, we used Markov’s Inequality on $|X - \mathbb{E}[X]|^2$ to get a stronger bound; to prove Hoeffding’s Inequality, we will extend this idea further. To do so, we need the concept of moment generating functions.

Definition 2 The moment generating function $\psi(t)$ of a random variable X is defined as the function:

$$\psi(t) = \mathbb{E}[e^{tX}]$$
Example 4: Moment Generating Functions. Suppose X is a random variable which represents the outcome of a coin toss with bias p. Then the moment generating function (m.g.f) of X is:

$$E[e^{tX}] = pe^t + (1 - p)$$

In general if X is a discrete random variable, which takes values x_1, \ldots, x_k w.p. p_1, \ldots, p_k, then,

$$E[e^{tX}] = p_1e^{tx_1} + p_2e^{tx_2} + \ldots + p_ke^{tx_k}$$

If X is a standard normal variable, then the m.g.f of X is $E[e^{tX}] = e^{t^2/2}$.

In general moment generating functions may not always be defined. But if $\psi(t)$ is defined in an interval $[-\delta, \delta]$ around 0, then,

1. All moments of X are finite, and
 $$E[X^k] = \frac{\partial^k \psi}{\partial t^k} \bigg|_{t=0}$$

2. If X and Y are two random variables such that $\psi_X(t) = \psi_Y(t)$ for all $t \in [-\delta, \delta]$, then X and Y have the same cumulative frequency distribution.

Fact 6 If X and Y are two independent random variables, then

$$E[e^{t(X+Y)}] = E[e^{tX}] \cdot E[e^{tY}]$$

Before we prove Hoeffding’s Inequality, we need one more lemma.

Lemma 1 If X is a random variable such that $E[X] = 0$ and $a \leq X \leq b$, then, for any $t > 0$,

$$E[e^{tX}] \leq e^{t^2(b-a)^2/8}$$

Proof: Recall that e^{tx} is a convex function of x. If $x = \lambda a + (1-\lambda)b$, we can use Jensen’s Inequality to write:

$$e^{tx} \leq \lambda e^{ta} + (1-\lambda)e^{tb}$$

Plugging in $\lambda = \frac{b-x}{b-a}$, we get that:

$$e^{tx} \leq \frac{b-x}{b-a} e^{ta} + \frac{x-a}{b-a} e^{tb}$$

Taking expectations on both sides and noting that $E[X] = 0$, we get:

$$E[e^{tX}] \leq \frac{be^{ta} - ae^{tb}}{b-a}$$

We can show using simple calculus that the right hand side of this equation is at most $e^{t^2(b-a)^2/8}$. □

We are now ready to prove Hoeffding’s inequality.

Theorem 6 (Hoeffding’s Inequality, restated) Let X_1, \ldots, X_n be independent and bounded random variables such that $a_i \leq X_i \leq b_i$. Then,

$$\Pr \left(\left| (X_1 + \ldots + X_n) - E[X_1 + \ldots + X_n] \right| \geq \epsilon \right) \leq 2e^{-\epsilon^2 / \sum_{i=1}^{n} (b_i-a_i)^2}$$
Proof: Let $S_n = X_1 + \ldots + X_n$, and let $Y_i = X_i - \mathbb{E}[X_i]$. Then, $a_i - \mathbb{E}[X_i] \leq Y_i \leq b_i - \mathbb{E}[X_i]$. For any $t > 0$,

$$
\Pr(S_n - \mathbb{E}[S_n] \geq \epsilon) = \Pr(Y_1 + \ldots + Y_n \geq \epsilon) = \Pr(e^{t(Y_1 + \ldots + Y_n)} \geq e^{t\epsilon}) \leq \frac{\mathbb{E}[e^{t(Y_1 + \ldots + Y_n)}]}{e^{t\epsilon}}
$$

where the last step follows from applying a Markov’s Inequality. Using the independence of moment generating functions, we get that:

$$
\mathbb{E}\left[e^{t(Y_1 + \ldots + Y_n)}\right] = \mathbb{E}[e^{tY_1}] \cdot \mathbb{E}[e^{tY_2}] \cdot \mathbb{E}[e^{tY_n}] \cdot e^{-t\epsilon}
$$

Using Lemma 1, the right hand side is at most:

$$
e^{t^2(b_1-a_1)^2/8} \cdot e^{t^2(b_2-a_2)^2/8} \cdot \ldots \cdot e^{t^2(b_n-a_n)^2/8} \cdot e^{-t\epsilon}
$$

Plugging in $t = \frac{4\epsilon}{\sum_i(b_i-a_i)^2}$, this is at most $e^{-2\epsilon^2/\sum_i(b_i-a_i)^2}$, \(\square\)