Lecture 9
CSE 260 – Parallel Computation
(Fall 2015)
Scott B. Baden

Performance modeling
Further improvements to matrix multiplication
Today’s lecture

• Performance modeling
• An improved matrix multiply
Performance modeling

• Given N, application flop rate, and peak rates of the hardware
 ◆ Determine if app is compute bound or communication bound
 ◆ Predict performance of unblocked algorithm and account for discrepancy with observation

• The naïve algorithm
 ◆ N^3 multiply-adds
 ◆ Without tiling, algorithm loads N^3 doubles precision words@ 8 bytes/word (we ignore C)

• The hardware
 ◆ One GPU of the K80 can perform 832 MADs / cycle and transfer 240 GB/sec
 ◆ Processor clock runs at 823.5 MHz
Tesla Kepler K80/K20m (GK 210/110)

- Sorken has device capability 3.7, Stampede has 3.5
 - 111/4 (5) GB device memory (frame buffer)@ 240 (208) GB/s
 - 1.5MB (1.25MB) shared L2 Cache (by all SMXs)
 - 13 SMXs (2496 cores) on Sorken and Stampede

- Sorken’s K80 (GK210 GPU) has more registers and larger shared memory per device than Stampede’s K20m (GK110 GPU)
 - 192 SP cores, 64 DP cores, 32 SFUs, 32 Load/Store units
 - Each scalar core: fused multiply adder, truncates intermediate result
 - 112K (64KB) on-chip memory configurable as scratchpad memory + L1 cache
 - 128K (64K) x 32-bit registers up to 255/thread
 - 1 FMA /cycle = 2 flops/cycle/ DP core*64 DP/SMX*13 SMX = 1664 flops/cyc @823.5 MHz (705.5 MHz) = 2.74 TFLOPS per GPU (1.17)

![Nvidia](image)
Analysis

• Based on work to be done, data to be moved, and hardware performance
 ◆ Predicted data motion time: 89 milliseconds
 ◆ Predicted computation time: 195 microseconds
 ◆ The application is communication bound

• The measured running time: 227ms (118GFlops)

• Why did we run about twice as slow?
Do memory accesses coalesce?

```c
int I = by*blockDim.y + ty;
int J = bx*blockDim.x + tx;
int N = blockDim.y*gridDim.y;
if ((I < N) && (J < N)){
    float _c = 0;
    for (k = 0; k < N; k++) {
        double a = A[I * N + k];
        double b = B[k * N + J];
        _c += a * b;
    }
    C[I * N + J] = _c;
}
```
Do memory accesses coalesce?

```c
int I = by*blockDim.y + ty;
int J = bx*blockDim.x + tx;
int N = blockDim.y*gridDim.y;
if ((I < N) && (J < N)){
    float _c = 0;
    for (k = 0; k < N; k++) {
        double a = A[I * N + k];
        double b = B[k * N + J];
        _c += a * b;
    }
    C[I * N + J] = _c;
}
```
Tiled algorithm

- Running time: 104 ms (259 GF): \(\sim x2\) faster
- Reduces memory traffic by at least \(x2\)
- Why not \(x32\), the reuse factor realized with shared memory?
- How many times do we load each value?

- Coalesced accesses cached in L2 (1.5MB all SMXs), not in L1
- A block consumes 8MB in each of 13 SMXs (and 2 blocks/SMX)
- Each thread uses 30 registers (30K/block)
- There are many registers to spare!
Tiled Code

• Code on page 112 (some identifier name changes)

```c
__global__ mmpy(double *A, double *B, double *C){
    __shared__ double A[TW][TW], A[TW][TW];
    int tx = threadIdx.y, ty = threadIdx.x;
    int by = blockIdx.y, bx = blockIdx.x
    int I = by*TW + ty, J = bx*TW+tx;
    double Cij = 0;
    for (int kk=0; kk<N/TW; kk++){
        As[ty][tx] = A[I*N + kk*TW+tx];
        Bs[ty][tx] = B[(kk*TW+ty)*N + J];
        __syncthreads();
        for (int k=0; k<TW; k++)
            Cij+= As[ty][k] * Bs[k][tx];
        __syncthreads();
    C[I*N + J] = Cij;
```
Today’s lecture

• Memory coalescing
• Avoiding bank conflicts
• Further Improvements to Matrix Multiply
How to improve matrix multiply still further

• Follows Volkov and Demmel, SC08
• Hide arithmetic latency using fewer threads
• Hide memory latency using fewer threads
• Improving performance using fewer threads
 • We can reduce number of threads through lower occupancy …
 • ..by making better use of registers we can trade locality against parallelism

• Code was implemented on a 1.x device so some details will be different
 (more registers on Kepler, for example)
Latency

• The time required to perform an operation
• The GK104 issues 1 instruction / cycle, the vector unit has 8 cores (SM): 4 cycles to issue a warp
• Instructions wait on dependencies
 \[x = a + b; \] // ~20 cycles to complete
 \[y = a + c; \] // independent, we start any time
• \[z = x + d; \] // dependent, wait on x
Arithmetic throughput

- The rate we perform an operation (flops/cycle)
- Arithmetic: 1.3 TFlops/sec = 480 ops/cycle
- Memory: 177 GB/sec ~ 32x 32 bit loads per cycle
How do we hide latency?

• Do something else while waiting for an operation to complete
• This where Little’s Law applies
• Required parallelism depends on latency and throughput

\[\text{Parallelism (threads)} = \text{latency} \times \text{throughput} \]

\[T = \lambda \times p \]

• Required parallelism depends on op; for single precision
 ✓ GT200 (C1060): \(24 \times 8 = 192 \text{ ops/SM}\)
 ✓ GF104 (GTX 460, Cseclass03-07): \(18 \times 48 = 864\)
 ✓ GK110?

• If we can’t realize the required parallelism we run at less peak performance
Thread vs instruction level parallelism

• We are told to maximize the number of threads
• But we can also use instruction level parallelism to boost performance at a lower occupancy

 ➤ See http://www.cs.berkeley.edu/~volkov/volkov10-GTC.pdf

• On GT200, 100% peak with 25% occupancy
 192 ops / cycle = 8 warps / 32 max possible warps

![Diagram showing thread operations and parallelism]
Hiding memory latency

• **Parallelism = latency × throughput**

 Arithmetic: 576 ops/SM = 18CP × 32/SM/CP
 Memory: 150KB = ~500CP (1100 nsec) × 150 GB/sec

• **How can we keep 150KB in flight?**
 - Multiple threads: ~35,000 threads @ 4B/thread
 - Do more work/thread (increase fetches per thread)
 - Larger fetches (64 or 128 bit/thread)
 - Higher occupancy

Copy 1 float /thread, need 100% occupancy
int indx = threadIdx.x + block * blockDim.x;
float a0 = src[indx];
dest[indx] = a0;

Copy 2 floats /thread, need 50% occ
float a0 = src[indx];
float a1 = src[indx+blockDim.x];
dest[indx] = a0;
dst[index+blockDim.x] = a1;

Copy 4 floats /thread, need 25% occ
int indx = threadIdx.x + 4 * block * blockDim.x;
float a[4]; // in registers
for(i=0;i<4;i++) a[i]=src[indx+i*blockDim.x];
for(i=0;i<4;i++) dst[indx+i*blockDim.x]=a[i];
Incremental improvements to matrix multiply

- Follows V. Volkov [GTC10]
- From the book
- Gets 137 Gflops / sec

```c
float Csub = 0;
for (int a = aBegin, b = bBegin; a <= aEnd; a += aStep, b += bStep)
{
    _shared_ float As[BLOCK_SIZE][BLOCK_SIZE];
    _shared_ float Bs[BLOCK_SIZE][BLOCK_SIZE];

    AS(ty, tx) = A[a + wA * ty + tx];
    BS(ty, tx) = B[b + wB * ty + tx];
    __syncthreads();

    #pragma unroll
    for (int k = 0; k < BLOCK_SIZE; ++k)
        Csub += AS(ty, k) * BS(k, tx);
    __syncthreads();
}
int c = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx;
C[c + wB * ty + tx] = Csub;
```
Two outputs / thread

• 2 outputs, double the loads

```c
float Csub[2] = {0, 0}; // array is allocated in registers
for (int a = aBegin, b = bBegin; a <= aEnd;
    a += aStep, b += bStep)
{
    __shared__ float As[BLOCK_SIZE][BLOCK_SIZE];
    __shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];

    AS(ty, tx) = A[a + wA * ty + tx];
    BS(ty, tx) = B[b + wB * ty + tx];
    AS(ty+16, tx) = A[a + wA * (ty+16) + tx];
    BS(ty+16, tx) = B[b + wB * (ty+16) + tx];
    __syncthreads();
```
Two outputs / thread, part 2

- $\times 2$ flops and stores
- 341 Gflops/sec

```c
#pragma unroll
    for (int k = 0; k < BLOCK_SIZE; ++k)
    {
        Csub[0] += AS(ty, k) * BS(k, tx);
        Csub[1] += AS(ty+16, k) * BS(k, tx);
    }
    __syncthreads();

int c = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx;
C[c + wB * ty + tx] = Csub[0];
C[c + wB * (ty+16) + tx] = Csub[1];
```
4 outputs / thread

```c
float Csub[4] = {0, 0, 0, 0}; // array is in registers
for (int a = aBegin, b = bBegin; a <= aEnd;
     a += aStep, b += bStep)
{
    __shared__ float As[BLOCK_SIZE][BLOCK_SIZE];
    __shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];

    As(ty, tx) = A[a + wA * ty + tx];
    BS(ty, tx) = B[b + wB * ty + tx];
    AS(ty+8, tx) = A[a + wA * (ty+8) + tx];
    BS(ty+8, tx) = B[b + wB * (ty+8) + tx];
    AS(ty+16, tx) = A[a + wA * (ty+16) + tx];
    BS(ty+16, tx) = B[b + wB * (ty+16) + tx];
    AS(ty+24, tx) = A[a + wA * (ty+24) + tx];
    BS(ty+24, tx) = B[b + wB * (ty+24) + tx];
    __syncthreads();
```
4 outputs / thread

- 427 Gflops/sec [w/8 output/thread → 485 Gflops/s)
- ×2 # registers
- 50% occupancy

```c
#pragma unroll
for (int k = 0; k < BLOCK_SIZE; ++k)
{
    Csub[0] += AS(ty, k) * BS(k, tx);
    Csub[1] += AS(ty+8, k) * BS(k, tx);
    Csub[2] += AS(ty+16, k) * BS(k, tx);
    Csub[3] += AS(ty+24, k) * BS(k, tx);
}
__syncthreads();
```

int c = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx;
C[c + wB * ty + tx] = Csub[0];
C[c + wB * (ty+8) + tx] = Csub[1];
C[c + wB * (ty+16) + tx] = Csub[2];
C[c + wB * (ty+24) + tx] = Csub[3];
Volkov and Demmel’s SGEMM

- Improve performance using fewer threads
 - Reducing concurrency frees up registers to trade locality against parallelism
 - ILP to increase processor utilization

Vector length: 64 //stripmined into two warps by GPU
Registers: \(\mathbf{a}, \mathbf{c}[1:16] \) //each is 64-element vector
Shared memory: \(\mathbf{b}[16][16] \) //may include padding

Compute pointers in \(A, B \) and \(C \) using thread ID
\(\mathbf{c}[1:16] = 0 \)

\[
\text{do}
\begin{align*}
 \mathbf{b}[1:16][1:16] &= \text{next 16x16 block in B or } B^T \\
 \text{local barrier} &//wait until \mathbf{b}[][] \text{ is written by all warps} \\
 \text{unroll for } i = 1 \text{ to } 16 \text{ do} \\
 &\mathbf{a} = \text{next 64x1 column of } \mathbf{A} \\
 &\mathbf{c}[1] += \mathbf{a} \cdot \mathbf{b}[i][1] \quad // rank-1 update of \mathbf{C}'s block \\
 &\mathbf{c}[2] += \mathbf{a} \cdot \mathbf{b}[i][2] \quad // data parallelism = 1024 \\
 &\mathbf{c}[3] += \mathbf{a} \cdot \mathbf{b}[i][3] \quad // stripmined in software \\
 &\quad // into 16 operations \\
 &\quad \mathbf{c}[16] += \mathbf{a} \cdot \mathbf{b}[i][16] \quad // access to \mathbf{b}[][] \text{ is stride-1} \\
 \text{endfor}
\end{align*}
\]

\text{local barrier} //wait until done using \(\mathbf{b}[][] \)
update pointers in \(A \) and \(B \)
repeat until pointer in \(B \) is out of range
Merge \(\mathbf{c}[1:16] \) with 64x16 block of \(C \) in memory
Fin