Announcements

- Graded homework 1 has been returned
- Homework 2 is due Sun, Nov 8, 11:59 PM
- Reading:
 - Chapter 8: Structure from Motion
 - Optional: Multiple View Geometry in Computer Vision, 2nd edition, Hartley and Zisserman

Motion

- Some problems of motion
 - Correspondence: Where have elements of the image moved between image frames?
 - Reconstruction: Given correspondences, what is 3D geometry of scene?
 - Motion segmentation: What are regions of image corresponding to different moving objects?
 - Tracking: Where have objects moved in the image? (related to correspondence and segmentation)

Structure from Motion

- Objective
 - Given two or more images (or video frames), without knowledge of the camera poses (rotations and translations), estimate the camera poses and 3D structure of scene.
- Considerations
 - Discrete motion (wide baseline) vs. continuous (infinitesimal) motion
 - Calibrated vs. uncalibrated
 - Two views vs. multiple views
 - Orthographic (affine) vs. perspective
Discrete Motion, Calibrated

- Consider m images of n points, how many unknowns?
 - Unknowns
 - 3D Structure: $3n$
 - First normalized camera $\hat{P} = [I | 0]$
 - Rotations: $3(m - 1)$
 - Translations (to scale): $3(m - 1) - 1$
 - Total: $3n + 6(m - 1) - 1$
 - Measurements
 - $2nm$
 - Solution when $3n + 6(m - 1) - 1 \leq 2nm$

Discrete Motion, Uncalibrated

- Consider m images of n points, how many unknowns?
 - Unknowns
 - 3D Structure: $3n$
 - Cameras (to 3D projective transformation): $11m - 15$
 - Total: $3n + 11m - 15$
 - Measurements
 - $2nm$
 - Solution when $3n + 11m - 15 \leq 2nm$

Two Views, Calibrated

- Input: Two images (or video frames)
- Detect feature points
- Determine feature correspondences
- Compute the essential matrix
- Retrieve the relative camera rotation and translation (to scale) from the essential matrix
- Optional: Perform dense stereo matching using recovered epipolar geometry
- Reconstruct corresponding 3D scene points (to scale)

Two Views, Uncalibrated

- Input: Two images (or video frames)
- Detect feature points
- Determine feature correspondences
- Compute the fundamental matrix
- Retrieve the relative camera 3D projective transformation from the fundamental matrix
- Optional: Perform dense stereo matching using recovered epipolar geometry
- Reconstruct corresponding 3D scene points (to 3D projective transformation)

Essential Matrix (Calibrated)

- Number of point correspondences and solutions
 - 5 point correspondences, up to 10 (real) solutions
 - 6 point correspondences, 1 solution
 - 7 point correspondences, 1 or 3 real solutions (and 2 or 0 complex ones)
 - 8 or more point correspondences, 1 solution

Fundamental Matrix (Uncalibrated)

- Number of point correspondences and solutions
 - 7 point correspondences, 1 or 3 real solutions (and 2 or 0 complex ones)
 - 8 or more point correspondences, 1 solution
Boardwork

- Fundamental matrix
 - Linear estimation (8 or more correspondences)
 - Retrieval of camera projection matrices and 3D projective transformation
- Essential matrix
 - Linear estimation (8 or more correspondences)
 - Retrieval of normalized camera projection matrices and 3D rotation and translation (to scale)

Feature detection

Select strongest features (e.g., 1000/image)

Feature matching

Evaluate normalized cross correlation (or sum of squared differences) for all features with similar coordinates
e.g. $(x', y') \in \{(x - \frac{b}{a}, y + \frac{c}{a}) \mid y' - \frac{e}{f}, y' + \frac{g}{f}\}$
Keep mutual best matches
Still many wrong matches!

Comments

- Greedy Algorithm:
 - Given feature in one image, find best match in second image irrespective of other matches
 - Suitable for small motions, little rotation, small search window
- Otherwise
 - Must compare descriptor over rotation
 - Cannot consider all potential pairings (way too many), so
 - Manual correspondence (e.g., photogrammetry)
 - Use robust outlier rejection (e.g., RANSAC)
 - More descriptive features (line segments, SIFT, larger regions, color)
 - Use video sequence to track, but perform SFM w/ first and last image

N-View Geometry

- Reconstruction
 - Bundle adjustment
 - Simultaneous adjustment of parameters for all cameras and all 3D scene points
 - Minimize reprojection error in all images
 - Reconstruction of cameras and 3D scene points to similarity (calibrated) or projective (uncalibrated) ambiguity
 - Factorization (see text)

Direct Reconstruction

Projective to Euclidean

5 (or more) points correspondences
N-View Geometry

• Example results

Next Lecture

• Mid-level vision
 – Grouping and model fitting
• Reading:
 – Chapter 10: Grouping and Model Fitting