Program Representations
Representing programs

• Goals
Representing programs

• Primary goals
 – analysis is easy and effective
 • just a few cases to handle
 • directly link related things
 – transformations are easy to perform
 – general, across input languages and target machines

• Additional goals
 – compact in memory
 – easy to translate to and from
 – tracks info from source through to binary, for source-level debugging, profiling, typed binaries
 – extensible (new opts, targets, language features)
 – displayable
Option 1: high-level syntax based IR

- Represent source-level structures and expressions directly
- Example: Abstract Syntax Tree

Source:

```plaintext
for i := 1 to 10 do
  a[i] := b[i] * 5;
end
```

AST:
Option 2: low-level IR

- Translate input programs into low-level primitive chunks, often close to the target machine
- Examples: assembly code, virtual machine code (e.g. stack machines), three-address code, register-transfer language (RTL)

<table>
<thead>
<tr>
<th>Standard RTL instrs:</th>
</tr>
</thead>
<tbody>
<tr>
<td>assignment</td>
</tr>
<tr>
<td>unary op</td>
</tr>
<tr>
<td>binary op</td>
</tr>
<tr>
<td>address-of</td>
</tr>
<tr>
<td>load</td>
</tr>
<tr>
<td>store</td>
</tr>
<tr>
<td>call</td>
</tr>
<tr>
<td>unary compare</td>
</tr>
<tr>
<td>binary compare</td>
</tr>
</tbody>
</table>
Option 2: low-level IR

Source:
for i := 1 to 10 do
 a[i] := b[i] * 5;
end

Control flow graph containing RTL instructions:

i := 1

i <= 10?

\[
\begin{align*}
 t1 & := i \times 4 \\
 t2 & := & b \\
 t3 & := *(t2 + t1) \\
 t4 & := t3 \times 5 \\
 t5 & := i \times 4 \\
 t6 & := & a \\
 *(t6 + t5) & := t4 \\
 i & := i + 1
\end{align*}
\]
Comparison
Comparison

• Advantages of high-level rep
 – analysis can exploit high-level knowledge of constructs
 – easy to map to source code (debugging, profiling)

• Advantages of low-level rep
 – can do low-level, machine specific reasoning
 – can be language-independent

• Can mix multiple reps in the same compiler
Components of representation

- Control dependencies: sequencing of operations
 - evaluation of if & then
 - side-effects of statements occur in right order

- Data dependencies: flow of definitions from defs to uses
 - operands computed before operations

- Ideal: represent just dependencies that matter
 - dependencies constrain transformations
 - fewest dependences \Rightarrow flexibility in implementation
Control dependencies

• Option 1: high-level representation
 – control implicit in semantics of AST nodes

• Option 2: control flow graph (CFG)
 – nodes are individual instructions
 – edges represent control flow between instructions

• Options 2b: CFG with basic blocks
 – basic block: sequence of instructions that don’t have any branches, and that have a single entry point
 – BB can make analysis more efficient: compute flow functions for an entire BB before start of analysis
Control dependencies

• CFG does not capture loops very well

• Some fancier options include:
 – the Control Dependence Graph
 – the Program Dependence Graph

• More on this later. Let’s first look at data dependencies
Data dependencies

• Simplest way to represent data dependencies: def/use chains
Def/use chains

• Directly captures dataflow
 – works well for things like constant prop

• But...

• Ignores control flow
 – misses some opt opportunities since conservatively considers all paths
 – not executable by itself (for example, need to keep CFG around)
 – not appropriate for code motion transformations

• Must update after each transformation

• Space consuming
SSA

• Static Single Assignment
 – invariant: each use of a variable has only one def
\begin{align*}
&x := \ldots \\
&y := \ldots \\
&\ldots x \ldots \\
&x := x + y \\
&\ldots x \ldots \\
&x := \ldots \\
&y := y + 1 \\
&\ldots x \ldots \\
&\ldots y \ldots \\
\end{align*}
SSA

- Create a new variable for each def
- Insert ϕ pseudo-assignments at merge points
- Adjust uses to refer to appropriate new names

Question: how can one figure out where to insert ϕ nodes using a liveness analysis and a reaching defns analysis.
Converting back from SSA

• Semantics of $x_3 := \phi(x_1, x_2)$
 – set x_3 to x_i if execution came from ith predecessor

• How to implement ϕ nodes?
Converting back from SSA

- Semantics of $x_3 := \phi(x_1, x_2)$
 - set x_3 to x_i if execution came from ith predecessor

- How to implement ϕ nodes?
 - Insert assignment $x_3 := x_1$ along 1st predecessor
 - Insert assignment $x_3 := x_2$ along 2nd predecessor

- If register allocator assigns x_1, x_2 and x_3 to the same register, these moves can be removed
 - $x_1 \ldots x_n$ usually have non-overlapping lifetimes, so this kind of register assignment is legal
Recall: Common Sub-expression Elim

- Want to compute when an expression is available in a var

- Domain:

\[\{ x \mapsto \hat{E}_1, \ y \mapsto \hat{E}_2, \ z \mapsto \hat{E}_3 \} \]

\[S = \{ x \mapsto E \mid x \in \text{Var}, \ E \in \text{Expr} \} \]

\[\emptyset \subseteq S \]

\[T = S \]

\[T \leq \emptyset \]

\[u = \lambda \]
Recall: CSE Flow functions

\[\text{Recall: CSE Flow functions} \]

\[\begin{align*}
\text{in} & \quad \text{out} \\
X := Y \text{ op } Z
\end{align*} \]

\[F_X := Y \text{ op } Z \text{(in)} = \text{in} - \{ X \rightarrow * \} - \{ * \rightarrow \ldots X \ldots \} \cup \{ X \rightarrow Y \text{ op } Z \mid X \neq Y \land X \neq Z \} \]

\[
\begin{array}{c}
\text{in} \\
\text{out} \\
X := Y
\end{array}
\]

\[F_X := Y \text{(in)} = \text{in} - \{ X \rightarrow * \} - \{ * \rightarrow \ldots X \ldots \} \cup \{ X \rightarrow E \mid Y \rightarrow E \in \text{in} \} \]
Example

\[i := a + b \]
\[x := i \times 4 \]
\[j := i \]
\[i := c \]
\[z := j \times 4 \]
\[m := b + a \]
\[w := 4 \times m \]
\[y := i \times 4 \]
\[i := i + 1 \]
Example

\[
i := a + b \\
x := i \times 4
\]

\[
j := i \\
i := c \\
z := j \times 4
\]

\[
m := b + a \\
w := 4 \times m
\]

\[
i := i + 1
\]

\[
y := i \times 4
\]
Problems

• $z := j \times 4$ is not optimized to $z := x$, even though x contains the value $j \times 4$

• $m := b + a$ is not optimized, even though $a + b$ was already computed

• $w := 4 \times m$ is not optimized to $w := x$, even though x contains the value $4 \times m$
Problems: more abstractly

- Available expressions overly sensitive to name choices, operand orderings, renamings, assignments
- Use SSA: distinct values have distinct names
- Do copy prop before running available exprs
- Adopt canonical form for commutative ops
Example in SSA

\[X := Y \text{ op } Z \]

in

\[F_X := Y \text{ op } Z \text{(in)} \]

out

\[X := \phi(Y, Z) \]

\[\text{in}_0 \rightarrow \text{in}_1 \]

\[F_X := \phi(Y, Z)(\text{in}_0, \text{in}_1) \]
Example in SSA

\[X := Y \text{ op } Z \]

\[F_X := Y \text{ op } Z(\text{in}) = \text{in} \cup \{ X \rightarrow Y \text{ op } Z \} \]

\[X := \phi(Y, Z) \]

\[F_X := \phi(Y, Z)(\text{in}_0, \text{in}_1) = (\text{in}_0 \cap \text{in}_1) \cup \{ X \rightarrow E | Y \rightarrow E \in \text{in}_0 \land Z \rightarrow E \in \text{in}_1 \} \]
Example in SSA

\[
\begin{align*}
 i & := a + b \\
 x & := i \times 4 \\
 j & := i \\
 i & := c \\
 z & := j \times 4 \\
 m & := b + a \\
 w & := 4 \times m \\
 y & := i \times 4 \\
 i & := i + 1
\end{align*}
\]
Example in SSA

\[i_1 := a_1 + b_1 \]
\[x_1 := i_1 \times 4 \]

\[j_1 := i_1 \]
\[i_2 := c_1 \]
\[z_1 := i_1 \times 4 \]

\[i_4 := \phi(i_1, i_3) \]
\[y_1 := i_4 \times 4 \]
\[i_3 := i_4 + 1 \]

\[m_1 := a_1 + b_1 \]
\[w_1 := m_1 \times 4 \]
What about pointers?

• Pointers complicate SSA. Several options.

• Option 1: don’t use SSA for pointed to variables
• Option 2: adapt SSA to account for pointers
• Option 3: define src language so that variables cannot be pointed to (eg: Java)
SSA helps us with CSE

• Let’s see what else SSA can help us with

• Loop-invariant code motion
Loop-invariant code motion

- Two steps: analysis and transformations

- Step 1: find invariant computations in loop
 - invariant: computes same result each time evaluated

- Step 2: move them outside loop
 - to top if used within loop: code hoisting
 - to bottom if used after loop: code sinking
Example

x := 3

y := 4

y := 5

z := x * y
q := y * y
w := y + 2

w := w + 5

p := w + y
x := x + 1
q := q + 1
Example

\[
x := 3
\]
\[
y := 4
\]
\[
q := y \ast y
\]
\[
w := y + 2
\]
\[
z := x \ast y
\]
\[
p := w + y
\]
\[
x := x + 1
\]
\[
q := q + 1
\]
\[
y := 5
\]
\[
w := w + 5
\]
Detecting loop invariants

• An expression is invariant in a loop L iff:

(base cases)
 – it’s a constant
 – it’s a variable use, all of whose defs are outside of L

(inductive cases)
 – it’s a pure computation all of whose args are loop-invariant
 – it’s a variable use with only one reaching def, and the rhs of that def is loop-invariant
Computing loop invariants

• Option 1: iterative dataflow analysis
 – optimistically assume all expressions loop-invariant, and propagate

• Option 2: build def/use chains
 – follow chains to identify and propagate invariant expressions

• Option 3: SSA
 – like option 2, but using SSA instead of def/use chains
Example using def/use chains

- An expression is invariant in a loop L iff:

 (base cases)
 - it’s a constant
 - it’s a variable use, all of whose defs are outside of L

 (inductive cases)
 - it’s a pure computation all of whose args are loop-invariant
 - it’s a variable use with only one reaching def, and the rhs of that def is loop-invariant

```plaintext
x := 3
y := 4
y := 5
z := x * y
q := y * y
w := y + 2
w := w + 5
p := w + y
x := x + 1
q := q + 1
```

```plaintext
y := 4
p := w + y
x := x + 1
q := q + 1
```
Example using def/use chains

- An expression is invariant in a loop L iff:

 (base cases)
 - it’s a constant
 - it’s a variable use, all of whose defs are outside of L

 (inductive cases)
 - it’s a pure computation all of whose args are loop-invariant
 - it’s a variable use with only one reaching def, and the rhs of that def is loop-invariant

```
x := 3
y := 4
```

```
y := 5
```

```
z := x * y
q := y * y
w := y + 2
```

```
w := w + 5
```

```
p := w + y
x := x + 1
q := q + 1
```
An expression is invariant in a loop L iff:

(base cases)
- it’s a constant
- it’s a variable use, all of whose single defs are outside of L

(inductive cases)
- it’s a pure computation all of whose args are loop-invariant
- it’s a variable use whose single reaching def, and the rhs of that def is loop-invariant

\(\phi \) functions are not pure
Example using SSA

- An expression is invariant in a loop L iff:

 (base cases)
 - it’s a constant
 - it’s a variable use, all of whose single defs are outside of L

 (inductive cases)
 - it’s a pure computation all of whose args are loop-invariant
 - it’s a variable use whose single reaching def, and the rhs of that def is loop-invariant

- ϕ functions are not pure
Example using SSA and preheader

- An expression is invariant in a loop L iff:
 (base cases)
 - it’s a constant
 - it’s a variable use, all of whose **single** defs are outside of L

- (inductive cases)
 - it’s a pure computation all of whose args are loop-invariant
 - it’s a variable use whose **single** reaching def, and the rhs of that def is loop-invariant

- ϕ functions are not pure
Summary: Loop-invariant code motion

• Two steps: analysis and transformations

• Step 1: find invariant computations in loop
 – invariant: computes same result each time evaluated

• Step 2: move them outside loop
 – to top if used within loop: code hoisting
 – to bottom if used after loop: code sinking
Code motion

• Say we found an invariant computation, and we want to move it out of the loop (to loop pre-header)

• When is it legal?

• Need to preserve relative order of invariant computations to preserve data flow among move statements

• Need to preserve relative order between invariant computations and other computations
Example

\[x := a \times b \]
\[y := \frac{x}{z} \]
\[i := i + 1 \]

\[z \neq 0 \&\& i < 100 ? \]

\[x := 0 \]
\[y := 1 \]
\[i := 0 \]

\[q := x + 1 \]
Lesson from example: domination restriction

• To move statement S to loop pre-header, S must **dominate** all loop exits

 [A dominates B when all paths to B first pass through A]

• Otherwise may execute S when never executed otherwise

• If S is pure, then can relax this constraint at cost of possibly slowing down the program
Domination restriction in for loops

\[i := 0 \]

\[i < N? \]

\[x := a / b \]
\[i := i + 1 \]
Domination restriction in for loops

Before

\[
\begin{align*}
i &:= 0 \\
i &< N? \\
x &:= a / b \\
i &:= i + 1
\end{align*}
\]

After

\[
\begin{align*}
i &:= 0 \\
i &< N? \\
x &:= a / b \\
i &:= i + 1
\end{align*}
\]
Avoiding domination restriction

• Domination restriction strict
 – Nothing inside branch can be moved
 – Nothing after a loop exit can be moved

• Can be circumvented through loop normalization
 – while-do => if-do-while
Another example

```
z := 5
i := 0

z := z + 1

z := 0

i := i + 1

i < N?
```

... z ...
Data dependence restriction

- To move S: $z := x \ op \ y$:

 S must be the only assignment to z in loop, and no use of z in loop reached by any def other than S

- Otherwise may reorder defs/uses
Avoiding data restriction

\[
\begin{align*}
z &:= 5 \\
i &:= 0
\end{align*}
\]

\[
\begin{align*}
z &:= z + 1 \\
z &:= 0 \\
i &:= i + 1 \\
i &< N \?
\end{align*}
\]

\[
\ldots z \ldots
\]
Avoiding data restriction

\[
\begin{align*}
z_1 & := 5 \\
i_1 & := 0 \\
z_2 & := \phi(z_1, z_4) \\
i_2 & := \phi(i_1, i_3) \\
z_3 & := z_2 + 1 \\
z_4 & := 0 \\
i_3 & := i_2 + 1 \\
i_3 & < N ? \\
\end{align*}
\]

- Restriction unnecessary in SSA!!!
- Implementation of phi nodes as moves will cope with re-ordered defs/uses
Summary of Data dependencies

• We’ve seen SSA, a way to encode data dependencies better than just def/use chains
 – makes CSE easier
 – makes loop invariant detection easier
 – makes code motion easier

• Now we move on to looking at how to encode control dependencies
Control Dependencies

• A node (basic block) Y is control-dependent on another X iff X determines whether Y executes
 – there exists a path from X to Y s.t. every node in the path other than X and Y is post-dominated by Y
 – X is not post-dominated by Y
Control Dependencies

• A node (basic block) Y is control-dependent on another X iff X determines whether Y executes
 – there exists a path from X to Y s.t. every node in the path other than X and Y is post-dominated by Y
 – X is not post-dominated by Y
Example

1. \(y := p + q \)
2. \(x > 0? \)

3. \(a := x \times y \)
4. \(a := y - 2 \)

5. \(w := y / q \)
6. \(x > 0? \)

7. \(b := 1 \ll w \)

8. \(r := a \% b \)
Example

Control dependence relation:

3 depends on 2
4 " " 2
7 " " 6

```
1 y := p + q
2 x > 0?

3 a := x * y
4 a := y - 2

5 w := y / q
6 x > 0?

7 b := 1 << w

8 r := a % b
```
Control Dependence Graph

- Control dependence graph: Y descendent of X iff Y is control dependent on X
 - label each child edge with required condition
 - group all children with same condition under region node

- Program dependence graph: super-impose dataflow graph (in SSA form or not) on top of the control dependence graph
Example

1. $y := p + q$
2. $x > 0$?

3. $a := x \times y$
4. $a := y - 2$

5. $w := y / q$
6. $x > 0$?

7. $b := 1 \ll w$

8. $r := a \% b$

Control dependence relation:

- 3 depends on 2
- 4 “ “ 2
- 7 “ “ 6
Example

1. $y := p + q$
2. $x > 0$?
3. $a := x \times y$
4. $a := y - 2$
5. $w := y / q$
6. $x > 0$?
7. $b := 1 \ll w$
8. $r := a \% b$

Control dependence relation:
- 3 depends on 2
- 4 depends on 2
- 7 depends on 6
Another example
Another example
Another example

1) $i_1 := 0;$
 while \ldots do
 2) $i_3 := \phi(i_1, i_2);$
 3) $x := i_3 \times b;$
 if \ldots then
 4) $w := c \times c;$
 5) $Y_1 := 9 + w;$
 else
 6) $Y_2 := 9;$
 end
 7) $Y_3 := \phi(Y_1, Y_2);$
 8) print(Y_3);
 9) $i_2 := i_3 + 1;$
 end
Summary of Control Dependence Graph

• More flexible way of representing control-depencies than CFG (less constraining)

• Makes code motion a local transformation

• However, much harder to convert back to an executable form
Course summary so far

• Dataflow analysis
 – flow functions, lattice theoretic framework, optimistic iterative analysis, precision, MOP

• Advanced Program Representations
 – SSA, CDG, PDG

• Along the way, several analyses and opts
 – reaching defns, const prop & folding, available exprs & CSE, liveness & DAE, loop invariant code motion

• Pointer analysis
 – Andersen, Steensgaard, and long the way: flow-insensitive analysis

• Next: dealing with procedures