Program Representations

Representing programs

- **Goals**
 - analysis is easy and effective
 - just a few cases to handle
 - transformations are easy to perform
 - general, across input languages and target machines

- **Additional goals**
 - compact in memory
 - easy to translate to and from
 - tracks info from source through to binary, for source-level debugging, profiling, typed binaries
 - extensible (new opts, targets, language features)
 - displayable

Option 1: high-level syntax based IR

- Represent source-level structures and expressions directly
- Example: Abstract Syntax Tree

Option 2: low-level IR

- Translate input programs into low-level primitive chunks, often close to the target machine
- Examples: assembly code, virtual machine code (e.g. stack machines), three-address code, register-transfer language (RTL)
- Standard RTL instrs:
 - assignment: \(x := y \)
 - unary op: \(x := \text{op} y \)
 - binary op: \(x := y \text{ op } z \)
 - load: \(x := *(p + o) \)
 - store: \(*(p + o) := x \)
 - call: \(x := f(...) \)
 - unary compare: \(\text{op} x \ ? \)
 - binary compare: \(x \text{ op } y \ ? \)

Option 2: low-level IR

Source:

```
for i := 1 to 10 do
a[i] := b[i] * 5;
end
```

AST:

```
for i := 1 to 10 do
  a[i] := b[i] * 5;
end
```

Control flow graph containing RTL instructions:

```
for i := 1 to 10 do
  a[i] := b[i] * 5;
end
```
Comparison

• Advantages of high-level rep
 – analysis can exploit high-level knowledge of constructs
 – easy to map to source code (debugging, profiling)
• Advantages of low-level rep
 – can do low-level, machine specific reasoning
 – can be language-independent
• Can mix multiple reps in the same compiler

Components of representation

• Control dependencies: sequencing of operations
 – evaluation of if & then
 – side-effects of statements occur in right order
• Data dependencies: flow of definitions from defs to uses
 – operands computed before operations
• Ideal: represent just dependencies that matter
 – dependencies constrain transformations
 – fewest dependences ⇒ flexibility in implementation

Control dependencies

• Option 1: high-level representation
 – control implicit in semantics of AST nodes
• Option 2: control flow graph (CFG)
 – nodes are individual instructions
 – edges represent control flow between instructions
• Options 2b: CFG with basic blocks
 – basic block: sequence of instructions that don’t have any branches, and that have a single entry point
 – BB can make analysis more efficient: compute flow functions for an entire BB before start of analysis

Control dependencies

• CFG does not capture loops very well

 • Some fancier options include:
 – the Control Dependence Graph
 – the Program Dependence Graph

 • More on this later. Let’s first look at data dependencies

Data dependencies

• Simplest way to represent data dependencies: def/use chains

[Diagram showing def/use chains]
Def/use chains

- Directly captures dataflow
 - works well for things like constant prop
- But...
- Ignores control flow
 - misses some opt opportunities since conservatively considers all paths
 - not executable by itself (for example, need to keep CFG around)
 - not appropriate for code motion transformations
- Must update after each transformation
- Space consuming

SSA

- Static Single Assignment
 - invariant: each use of a variable has only one def

SSA

- Create a new variable for each def
- Insert \(\phi \) pseudo-assignments at merge points
- Adjust uses to refer to appropriate new names
- Question: how can one figure out where to insert \(\phi \) nodes using a liveness analysis and a reaching defns analysis.

Converting back from SSA

- Semantics of \(x_3 := \phi(x_1, x_2) \)
 - set \(x_3 \) to \(x_i \) if execution came from ith predecessor
- How to implement \(\phi \) nodes?
 - Insert assignment \(x_3 := x_1 \) along 1st predecessor
 - Insert assignment \(x_3 := x_2 \) along 2nd predecessor
- If register allocator assigns \(x_1 \), \(x_2 \) and \(x_3 \) to the same register, these moves can be removed
 - \(x_1 \) .. \(x_n \) usually have non-overlapping lifetimes, so this kind of register assignment is legal
Recall: Common Sub-expression Elim

- Want to compute when an expression is available in a var
- Domain: $\{k \rightarrow E_1, \gamma \rightarrow E_2, \gamma \rightarrow E_3\}$
 $\subseteq \{X \rightarrow E \mid \forall i, E \in E_{pre}\}$

Recall: CSE Flow functions

$$F_X := Y op Z (in) = in - \{ X \rightarrow * \}$$
$$- \{ * \rightarrow \ldots X \ldots \} \cup$$
$$\{ X \rightarrow Y | Y \rightarrow E \in in \}$$

Example

```
Example

i := a + b
x := i * 4
j := i
i := i + 1
m := b + a
w := 4 * m
```

Problems

- z := j * 4 is not optimized to z := x, even though x contains the value j * 4
- m := b + a is not optimized, even though a + b was already computed
- w := 4 * m it not optimized to w := x, even though x contains the value 4 *m

Problems: more abstractly

- Available expressions overly sensitive to name choices, operand orderings, renamings, assignments
- Use SSA: distinct values have distinct names
- Do copy prop before running available exprs
- Adopt canonical form for commutative ops
Example in SSA

\[
X := Y \rightarrow Z \text{ (in)} =
\]

\[
X := \phi(Y, Z) \text{ (in}_0, \text{in}_1) =
\]

Example in SSA

\[
i := a + b
\]

\[
x := i \times 4
\]

\[
j := i
\]

\[
i := i + 1
\]

\[
m := b + a
\]

\[
w := 4 \times w
\]

What about pointers?

- Pointers complicate SSA. Several options.

- Option 1: don’t use SSA for pointed to variables
- Option 2: adapt SSA to account for pointers
- Option 3: define src language so that variables cannot be pointed to (eg: Java)

SSA helps us with CSE

- Let’s see what else SSA can help us with

- Loop-invariant code motion
Loop-invariant code motion

- Two steps: analysis and transformations

- Step 1: find invariant computations in loop
 - invariant: computes same result each time evaluated

- Step 2: move them outside loop
 - to top if used within loop: code hoisting
 - to bottom if used after loop: code sinking

Example

Example

Detecting loop invariants

- An expression is invariant in a loop L iff:
 (base cases)
 - it's a constant
 - it's a variable use, all of whose defs are outside of L

 (inductive cases)
 - it's a pure computation all of whose args are loop-invariant
 - it's a variable use with only one reaching def, and the rhs of that def is loop-invariant

Computing loop invariants

- Option 1: iterative dataflow analysis
 - optimistically assume all expressions loop-invariant, and propagate

- Option 2: build def/use chains
 - follow chains to identify and propagate invariant expressions

- Option 3: SSA
 - like option 2, but using SSA instead of def/use chains

Example using def/use chains

- An expression is invariant in a loop L iff:
 (base cases)
 - it's a constant
 - it's a variable use, all of whose defs are outside of L

 (inductive cases)
 - it's a pure computation all of whose args are loop-invariant
 - it's a variable use with only one reaching def, and the rhs of that def is loop-invariant
Example using def/use chains

- An expression is invariant in a loop L iff:
 (base cases)
 - it’s a constant
 - it’s a variable use, all of whose defs are outside of L
 (inductive cases)
 - it’s a pure computation all of whose args are loop invariant
 - it’s a variable use with only one reaching def, and the rhs of that def is loop-invariant

Example using SSA

- An expression is invariant in a loop L iff:
 (base cases)
 - it’s a constant
 - it’s a variable use, all of whose single defs are outside of L
 (inductive cases)
 - it’s a pure computation all of whose args are loop invariant
 - it’s a variable use whose single reaching def, and the rhs of that def is loop-invariant

Loop invariant detection using SSA

- An expression is invariant in a loop L iff:
 (base cases)
 - it’s a constant
 - it’s a variable use, all of whose single defs are outside of L
 (inductive cases)
 - it’s a pure computation all of whose args are loop-invariant
 - it’s a variable use whose single reaching def, and the rhs of that def is loop-invariant
 - \(\phi \) functions are not pure

Example using SSA and preheader

- An expression is invariant in a loop L iff:
 (base cases)
 - it’s a constant
 - it’s a variable use, all of whose single defs are outside of L
 (inductive cases)
 - it’s a pure computation all of whose args are loop-invariant
 - it’s a variable use whose single reaching def, and the rhs of that def is loop-invariant

Summary: Loop-invariant code motion

- Two steps: analysis and transformations
 - Step 1: find invariant computations in loop
 - invariant: computes same result each time evaluated
 - Step 2: move them outside loop
 - to top if used within loop: code hoisting
 - to bottom if used after loop: code sinking

Code motion

- Say we found an invariant computation, and we want to move it out of the loop (to loop preheader)
 - When is it legal?
 - Need to preserve relative order of invariant computations to preserve data flow among move statements
 - Need to preserve relative order between invariant computations and other computations
Example

\[x := 0 \]
\[y := 1 \]
\[i := 0 \]
\[x := a \times b \]
\[y := x / z \]
\[i := i + 1 \]
\[z \neq 0 \land i < 100 ? \]
\[q := x + 1 \]

Lesson from example: domination restriction

- To move statement S to loop pre-header, S must **dominate** all loop exits
 \[A \text{ dominates } B \text{ when all paths to } B \text{ first pass through } A \]
- Otherwise may execute S when never executed otherwise
- If S is pure, then can relax this constraint at cost of possibly slowing down the program

Domination restriction in for loops

Avoiding domination restriction

- Domination restriction strict
 - Nothing inside branch can be moved
 - Nothing after a loop exit can be moved
- Can be circumvented through loop normalization
 - while-do => if-do-while

Another example
Data dependence restriction

- To move S: \(z := x \text{ op } y \):
 S must be the only assignment to \(z \) in loop, and no use of \(z \) in loop reached by any def other than S

- Otherwise may reorder defs/uses

Avoiding data restriction

\[
\begin{align*}
z & := 5 \\
i & := 0
\end{align*}
\]

\[
\begin{align*}
z & := z + 1 \\
x & := 0 \\
i & := i + 1 \\
i < N \?
\end{align*}
\]

Avoiding data restriction

\[
\begin{align*}
x_1 & := 5 \\
i_1 & := 0
\end{align*}
\]

\[
\begin{align*}
x_2 & := \phi(x_1, x_3) \\
i_2 & := \phi(i_1, i_3) \\
x_3 & := x_2 + 1 \\
x_4 & := 0 \\
i_3 & := i_3 + 1 \\
i_3 < N \?
\end{align*}
\]

\[
\begin{align*}
\ldots & \ldots
\end{align*}
\]

Summary of Data dependencies

- We’ve seen SSA, a way to encode data dependencies better than just def/use chains
 - makes CSE easier
 - makes loop invariant detection easier
 - makes code motion easier

- Now we move on to looking at how to encode control dependencies

Control Dependencies

- A node (basic block) \(Y \) is control-dependent on another \(X \) iff \(X \) determines whether \(Y \) executes
 - there exists a path from \(X \) to \(Y \) s.t. every node in the path other than \(X \) and \(Y \) is post-dominated by \(Y \)
 - \(X \) is not post-dominated by \(Y \)
Control Dependence Graph

- Control dependence graph: Y descendent of X iff Y is control dependent on X
 - label each child edge with required condition
 - group all children with same condition under region node
- Program dependence graph: super-impose dataflow graph (in SSA form or not) on top of the control dependence graph
Summary of Control Dependence Graph

- More flexible way of representing control-depencies than CFG (less constraining)

- Makes code motion a local transformation

- However, much harder to convert back to an executable form

Course summary so far

- Dataflow analysis
 - flow functions, lattice theoretic framework, optimistic iterative analysis, precision, MOP

- Advanced Program Representations
 - SSA, CDG, PDG

- Along the way, several analyses and opts
 - reaching defns, const prop & folding, available exprs & CSE, liveness & DAE, loop invariant code motion

- Pointer analysis
 - Andersen, Steensgaard, and long the way: flow-insensitive analysis

- Next: dealing with procedures