Pointer analysis
Pointer Analysis

• Outline:
 – What is pointer analysis
 – Intraprocedural pointer analysis
 – Interprocedural pointer analysis
 • Andersen and Steensgaard
Pointer and Alias Analysis

• Aliases: two expressions that denote the same memory location.

• Aliases are introduced by:
 – pointers
 – call-by-reference
 – array indexing
 – C unions
Useful for what?

- Improve the precision of analyses that require knowing what is modified or referenced (e.g., const prop, CSE ...)

- Eliminate redundant loads/stores and dead stores.

    ```
    x := *p;
    ...
    *x := ...; // is *x dead?
    y := *p; // replace with y := x?
    ```

- Parallelization of code
 - can recursive calls to quick_sort be run in parallel? Yes, provided that they reference distinct regions of the array.

- Identify objects to be tracked in error detection tools

    ```
    x.lock();
    ...
    y.unlock(); // same object as x?
    ```
Kinds of alias information

- **Points-to information (must or may versions)**
 - at program point, compute a set of pairs of the form $p ! x$, where p points to x.
 - can represent this information in a **points-to graph**

- **Alias pairs**
 - at each program point, compute the set of all pairs (e_1, e_2) where e_1 and e_2 must/may reference the same memory.

- **Storage shape analysis**
 - at each program point, compute an abstract description of the pointer structure.
Intraprocedural Points-to Analysis

• Want to compute may-points-to information

• Lattice:

\[D = 2 \{ x \rightarrow y | x \in \text{Var}, y \in \text{Var} \} \]

\[\mathcal{L} = \emptyset \]

\[\mathcal{T} = \{ x \rightarrow y | x \in \text{Var}, y \in \text{Var} \} \]
Flow functions

\[x := k \]

\[F_x := k \text{(in)} = \]

\[x := a + b \]

\[F_x := a+b \text{(in)} = \]
Flow functions

\[F_x := y(in) = \]

\[F_x := \&y (in) = \]
Flow functions

\[x := \ast y \]

\[F_{\ast x := y}(in) = \]

\[\ast x := y \]

\[F_{\ast x := y}(in) = \]
Intraprocedural Points-to Analysis

- Flow functions:

\[
\begin{align*}
\text{kill}(x) &= \bigcup_{v \in Vars} \{(x, v)\} \\
F_{x:=k}(S) &= S - \text{kill}(x) \\
F_{x:=a+b}(S) &= S - \text{kill}(x) \\
F_{x:=y}(S) &= S - \text{kill}(x) \cup \{(x, v) \mid (y, v) \in S\} \\
F_{x:=\&y}(S) &= S - \text{kill}(x) \cup \{(x, y)\} \\
F_{x:=*y}(S) &= S - \text{kill}(x) \cup \{(x, v) \mid \exists t \in Vars.[(y, t) \in S \land (t, v) \in S]\} \\
F_{*x:=y}(S) &= \text{let } V := \{v \mid (x, v) \in S\} \text{ in} \\
&\quad S - (\text{if } V = \{v\} \text{ then } \text{kill}(v) \text{ else } \emptyset) \cup \{(v, t) \mid v \in V \land (y, t) \in S\}
\end{align*}
\]
Pointers to dynamically-allocated memory

• Handle statements of the form: \(x := \text{new } T \)

• One idea: generate a new variable each time the new statement is analyzed to stand for the new location:

\[
F_{x:=\text{new } T}(S) = S - \text{kill}(x) \cup \{(x, \text{newvar}())\}
\]
Example

```
1 := new Cons

p := 1

t := new Cons

*p := t

p := t
```
Example solved

\[
\begin{align*}
 l &:= \text{new Cons} \\
 p &:= l \\
 t &:= \text{new Cons} \\
 *p &:= t \\
 p &:= t
\end{align*}
\]
What went wrong?

• Lattice infinitely tall!

• We were essentially running the program

• Instead, we need to summarize the infinitely many allocated objects in a finite way

• **New Idea**: introduce summary nodes, which will stand for a whole class of allocated objects.
What went wrong?

- Example: For each new statement with label L, introduce a summary node loc_L, which stands for the memory allocated by statement L.

$$F_L : \ x := \text{new} \ T(S) = S - \text{kill}(x) \cup \{(x, \text{loc}_L)\}$$

- Summary nodes can use other criterion for merging.
S1: \(l := \text{new Cons} \)

\[p := l \]

S2: \(t := \text{new Cons} \)

\[*p := t \]

\[p := t \]
Example revisited & solved

\[S1: l := \text{new Cons} \]

\[p := l \]

\[\text{Iter 1} \]

\[S2: t := \text{new Cons} \]

\[*p := t \]

\[p := t \]

\[\text{Iter 2} \]

\[\text{Iter 3} \]
Array aliasing, and pointers to arrays

• Array indexing can cause aliasing:
 – \(a[i] \) aliases \(b[j] \) if:
 • \(a \) aliases \(b \) and \(i = j \)
 • \(a \) and \(b \) overlap, and \(i = j + k \), where \(k \) is the amount of overlap.

• Can have pointers to elements of an array
 – \(p := \& a[i]; \ldots; p++; \)

• How can arrays be modeled?
 – Could treat the whole array as one location.
 – Could try to reason about the array index expressions: array dependence analysis.
Fields

- Can summarize fields using per field summary
 - for each field F, keep a points-to node called F that summarizes all possible values that can ever be stored in F

- Can also use allocation sites
 - for each field F, and each allocation site S, keep a points-to node called (F, S) that summarizes all possible values that can ever be stored in the field F of objects allocated at site S.
Summary

• We just saw:
 – intraprocedural points-to analysis
 – handling dynamically allocated memory
 – handling pointers to arrays

• But, intraprocedural pointer analysis is not enough.
 – Sharing data structures across multiple procedures is one the big benefits of pointers: instead of passing the whole data structures around, just pass pointers to them (eg C pass by reference).
 – So pointers end up pointing to structures shared across procedures.
 – If you don’t do an interproc analysis, you’ll have to make conservative assumptions functions entries and function calls.
Conservative approximation on entry

• Say we don’t have interprocedural pointer analysis.

• What should the information be at the input of the following procedure:

```c
global g;
void p(x,y) {
    ...
}
```
Conservative approximation on entry

• Here are a few solutions:

```c
global g;
void p(x,y) {
    ...
}
```

• They are all very conservative!

• We can try to do better.
Interprocedural pointer analysis

- Main difficulty in performing interprocedural pointer analysis is scaling

- One can use a top-down summary based approach (Wilson & Lam 95), but even these are hard to scale
Example revisited

- **Cost:**
 - space: store one fact at each prog point
 - time: iteration

```
S1: l := new Cons

p := l

S2: t := new Cons

*p := t

p := t
```

Example revisited

```
Iter 1

Iter 2

Iter 3
```
New idea: store one dataflow fact

• Store one dataflow fact for the whole program
• Each statement updates this one dataflow fact
 – use the previous flow functions, but now they take the whole program dataflow fact, and return an updated version of it.
• Process each statement once, ignoring the order of the statements
• This is called a flow-insensitive analysis.
Flow insensitive pointer analysis

S1: \(l := \text{new Cons} \)

\[p := l \]

S2: \(t := \text{new Cons} \)

\[*p := t \]

\[p := t \]
Flow insensitive pointer analysis

S1: \(l := \text{new Cons} \)

\[p := l \]

S2: \(t := \text{new Cons} \)

\[*p := t \]

\[p := t \]
Flow sensitive vs. insensitive

S1: \(l := \text{new Cons} \)

\[p := l \]

S2: \(t := \text{new Cons} \)

\[*p := t \]

\[p := t \]

Flow-sensitive Soln

Flow-insensitive Soln
What went wrong?

- What happened to the link between p and S1?
 - Can’t do strong updates anymore!
 - Need to remove all the kill sets from the flow functions.

- What happened to the self loop on S2?
 - We still have to iterate!
Flow insensitive pointer analysis: fixed

\begin{itemize}
 \item S1: \(l := \text{new Cons} \)
 \item \(p := l \)
 \item S2: \(t := \text{new Cons} \)
 \item \(*p := t \)
 \item \(p := t \)
\end{itemize}
Flow insensitive pointer analysis: fixed

This is Andersen’s algorithm ’94

S1: \(l := \text{new Cons} \)

\[p := l \]

S2: \(t := \text{new Cons} \)

\[*p := t \]

\[p := t \]

Final result

Iter 1

Iter 2

Iter 3

This is Andersen’s algorithm ’94.
Flow sensitive vs. insensitive, again

S1: l := new Cons

p := l

S2: t := new Cons

*p := t

p := t

Flow-sensitive Soln

Flow-insensitive Soln
Flow insensitive loss of precision

• Flow insensitive analysis leads to loss of precision!

```go
typewriter
main() {
    x := &y;
    ...
    x := &z;
typewriter
}
```

• However:
 – uses less memory (memory can be a big bottleneck to running on large programs)
 – runs faster
In Class Exercise!

S1: \(p := \text{new Cons} \)

S2: \(q := \text{new Cons} \)

\(*p = q \)

\(r = \&q \)

\(*q = r \) \(*q = p \)

\(s = r \) \(s = p \)

\(*r = s \)
In Class Exercise! solved

S1: \(p := \text{new Cons} \)

S2: \(q := \text{new Cons} \)

\(\ast p = q \)

\(r = \& q \)

\(\ast q = r \)

\(\ast q = p \)

\(s = r \)

\(s = p \)

\(\ast r = s \)
Worst case complexity of Andersen

Worst case: N^2 per statement, so at least N^3 for the whole program. Andersen is in fact $O(N^3)$.
New idea: one successor per node

• Make each node have only one successor.
• This is an invariant that we want to maintain.
More general case for $*x = y$
More general case for \(*x = y*\)
Handling: $x = *y$
Handling: $x = \ast y$
Handling: $x = y$ (what about $y = x$?)

Handling: $x = \&y$
Handling: $x = y$ (what about $y = x$?)

get the same for $y = x$

Handling: $x = \&y$

$y,...$
Our favorite example, once more!

1. S1: \(l := \text{new Cons} \)
2. \(p := l \)
3. S2: \(t := \text{new Cons} \)
4. \(*p := t \)
5. \(p := t \)
Our favorite example, once more!

S1: \(l := \text{new Cons} \)

1. \(p := l \)

2. \(t := \text{new Cons} \)

3. \(*p := t \)

4. \(p := t \)

5. \(l, p, t \)

S2: \(t := \text{new Cons} \)
Flow insensitive loss of precision

S1: l := new Cons

p := l

S2: t := new Cons

*p := t

p := t

Flow-sensitive
Subset-based

Flow-insensitive
Subset-based

Flow-insensitive
Unification-based

l

p

S1

S2

t

l

S1

S2

p

S1

S2

t

s1,s2
Another example

bar() {
 ① i := &a;
 ② j := &b;
 ③ foo(&i);
 ④ foo(&j);
 // i pnts to what?
 *i := ...;
}

void foo(int* p) {
 printf("%d",*p);
}
Another example

```c
bar() {
    ① i := &a;
    ② j := &b;
    ③ foo(&i);
    ④ foo(&j);
    // i pnts to what?
    *i := ...;
}

void foo(int* p) {
    printf("%d",*p);
}
```
Almost linear time

• Time complexity: $O(N\alpha(N, N))$

• So slow-growing, it is basically linear in practice

• For the curious: node merging implemented using UNION-FIND structure, which allows set union with amortized cost of $O(\alpha(N, N))$ per op. Take CSE 202 to learn more!
In Class Exercise!

S1: \(p := \text{new Cons} \)

S2: \(q := \text{new Cons} \)

\(*p = q \)

\(r = \&q \)

\(*q = r \)

\(*q = p \)

\(s = r \)

\(s = p \)

\(*r = s \)
In Class Exercise! solved

S1: p := new Cons

S2: q := new Cons

*p = q

r = &q

*q = r

*s = r

*q = p

*s = p

*r = s

Steensgaard

Andersen
Advanced Pointer Analysis

- Combine flow-sensitive/flow-insensitive
- Clever data-structure design
- Context-sensitivity