Pointer analysis
Pointer Analysis

• Outline:
 – What is pointer analysis
 – Intraprocedural pointer analysis
 – Interprocedural pointer analysis
 • Andersen and Steensgaard
Pointer and Alias Analysis

• Aliases: two expressions that denote the same memory location.

• Aliases are introduced by:
 – pointers
 – call-by-reference
 – array indexing
 – C unions
Useful for what?

- Improve the precision of analyses that require knowing what is modified or referenced (eg const prop, CSE …)
- Eliminate redundant loads/stores and dead stores.

  ```
  x := *p;
  ...
  *x := ...; // is *x dead?
  y := *p; // replace with y := x?
  ```

- Parallelization of code
 - can recursive calls to quick_sort be run in parallel? Yes, provided that they reference distinct regions of the array.

- Identify objects to be tracked in error detection tools
  ```
  x.lock();
  ...
  y.unlock(); // same object as x?
  ```
Kinds of alias information

- Points-to information (must or may versions)
 - at program point, compute a set of pairs of the form $p \rightarrow x$, where p points to x.
 - can represent this information in a **points-to graph**

- Alias pairs
 - at each program point, compute the set of all pairs (e_1, e_2) where e_1 and e_2 must/may reference the same memory.

- Storage shape analysis
 - at each program point, compute an abstract description of the pointer structure.
Intraprocedural Points-to Analysis

- Want to compute may-points-to information

- Lattice:

\[D = 2 \{ x \rightarrow y \mid x \in \text{Var}, y \in \text{Var} \} \]

\[U = U \]

\[\subseteq = \subseteq \]

\[L = \emptyset \]

\[T = \{ x \rightarrow y \mid x \in \text{Var}, y \in \text{Var} \} \]
Flow functions

\[x \leftarrow k \quad \text{in} \quad \text{out} \]

\[F_{x := k}(\text{in}) = \{ \text{in} - \{ x \rightarrow k \} \} \]

\[x := a + b \quad \text{in} \quad \text{out} \]

\[F_{x := a+b}(\text{in}) = \{ \text{in} - \{ x \rightarrow k \} \} \]
Flow functions

\[
F_{x := y}(\text{in}) = \text{in} - \text{kill}(x) \cup \{ x \rightarrow z \mid y \rightarrow z \in \text{in} \}
\]

\[
F_{x := \&y}(\text{in}) = \text{in} - \text{kill}(x) \cup \{ x \rightarrow y \}
\]

\[\text{kill}(x) = \{ x \rightarrow \ast \}\]
Flow functions

\[
F_x := \ast y (\text{in}) = \text{in} - \text{kill}(x)
\]

\[
\cup \{ x \rightarrow z \mid \exists y : x \land y \rightarrow z \in \text{in} \} \quad x \rightarrow z \in \text{in}
\]

\[
F^*_x := \ast y (\text{in}) = \text{in} \cup \{ z \rightarrow t \mid x \rightarrow z \in \text{in} \land y \rightarrow t \in \text{in} \}
\]

\[
\rightarrow_{5b} \quad \rightarrow_d
\]

\[
x \rightarrow_{5b} \quad y \rightarrow_d
\]

\[
C \quad \rightarrow_{5f}
\]
Intraprocedural Points-to Analysis

- Flow functions:

\[
\begin{align*}
\text{kill}(x) &= \bigcup_{v \in Vars} \{(x, v)\} \\
F_{x:=k}(S) &= S - \text{kill}(x) \\
F_{x:=a+b}(S) &= S - \text{kill}(x) \\
F_{x:=y}(S) &= S - \text{kill}(x) \cup \{(x, v) \mid (y, v) \in S\} \\
F_{x:=\&y}(S) &= S - \text{kill}(x) \cup \{(x, y)\} \\
F_{x:=*y}(S) &= S - \text{kill}(x) \cup \{(x, v) \mid \exists t \in Vars. [(y, t) \in S \land (t, v) \in S]\} \\
F_{*x:=y}(S) &= \text{let } V := \{v \mid (x, v) \in S\} \text{ in } \\
&\quad S - (\text{if } V = \{v\} \text{ then } \text{kill}(v) \text{ else } \emptyset) \\
&\quad \cup \{(v, t) \mid v \in V \land (y, t) \in S\}
\end{align*}
\]
Pointers to dynamically-allocated memory

- Handle statements of the form: \(x := \text{new } T \)
- One idea: generate a new variable each time the new statement is analyzed to stand for the new location:

\[
F_{x:=\text{new } T}(S) = S - \text{kill}(x) \cup \{(x, \text{newvar}())\}
\]
Example

l := new Cons

p := l

t := new Cons

*p := t

p := t
Example solved

\[
\begin{align*}
 & l := \text{new Cons} \\
 & \rightarrow p := l \\
 & t := \text{new Cons} \\
 & \rightarrow *p := t \\
 & \rightarrow p := t
\end{align*}
\]
What went wrong?

- Lattice infinitely tall!
- We were essentially running the program
- Instead, we need to summarize the infinitely many allocated objects in a finite way
- **New Idea**: introduce summary nodes, which will stand for a whole class of allocated objects.
What went wrong?

• Example: For each new statement with label \(L \), introduce a summary node \(\text{loc}_L \), which stands for the memory allocated by statement \(L \).

\[
F_L: \ x:=\text{new} \ T(S) = S - \text{kill}(x) \cup \{(x, \text{loc}_L)\}
\]

• Summary nodes can use other criterion for merging.
Example revisited

S1: \(l := \text{new Cons} \)

\[\begin{align*}
\text{p := l} \\
S2: \ t := \text{new Cons} \\
*\text{p := t} \\
\text{p := t}
\end{align*} \]
Example revisited & solved

S1: l := new Cons

p := l

S2: t := new Cons

*p := t

p := t

Iter 1

Iter 2

Iter 3
Example revisited & solved

S1: \(l := \text{new Cons} \)

\[l \\
\]
\[p := l \]

S2: \(t := \text{new Cons} \)

\[t \]
\[*p := t \]
\[p := t \]
Array aliasing, and pointers to arrays

• Array indexing can cause aliasing:
 – \(a[i] \) aliases \(b[j] \) if:
 • \(a \) aliases \(b \) and \(i = j \)
 • \(a \) and \(b \) overlap, and \(i = j + k \), where \(k \) is the amount of overlap.

• Can have pointers to elements of an array
 – \(p := \&a[i]; \ldots; p++ \);

• How can arrays be modeled?
 – Could treat the whole array as one location.
 – Could try to reason about the array index expressions: array dependence analysis.
Fields

• Can summarize fields using per-field summary
 – for each field F, keep a points-to node called F that summarizes all possible values that can ever be stored in F

• Can also use allocation sites
 – for each field F, and each allocation site S, keep a points-to node called (F, S) that summarizes all possible values that can ever be stored in the field F of objects allocated at site S.
Summary

• We just saw:
 – intraprocedural points-to analysis
 – handling dynamically allocated memory
 – handling pointers to arrays

• But, intraprocedural pointer analysis is not enough.
 – Sharing data structures across multiple procedures is one the big benefits of pointers: instead of passing the whole data structures around, just pass pointers to them (eg C pass by reference).
 – So pointers end up pointing to structures shared across procedures.
 – If you don’t do an interproc analysis, you’ll have to make conservative assumptions functions entries and function calls.
Conservative approximation on entry

• Say we don’t have interprocedural pointer analysis.

• What should the information be at the input of the following procedure:

```c
global g;
void p(x,y) {
    ...
}
```
Conservative approximation on entry

• Here are a few solutions:

```c
global g;
void p(x,y) {
    ...
}
```

• They are all very conservative!

• We can try to do better.
Interprocedural pointer analysis

- Main difficulty in performing interprocedural pointer analysis is scaling

- One can use a top-down summary based approach (Wilson & Lam 95), but even these are hard to scale
Example revisited

- Cost:
 - space: store one fact at each prog point
 - time: iteration

```
S1: l := new Cons

p := l

S2: t := new Cons

*p := t

p := t
```

![Diagram showing iteration process]
New idea: store one dataflow fact

- Store one dataflow fact for the whole program
- Each statement updates this one dataflow fact
 - use the previous flow functions, but now they take the whole program dataflow fact, and return an updated version of it.
- Process each statement once, ignoring the order of the statements
- This is called a flow-insensitive analysis.
Flow insensitive pointer analysis

S1: l := new Cons

p := l

S2: t := new Cons

*p := t

p := t
Flow insensitive pointer analysis

S1: l := new Cons

p := l

S2: t := new Cons

*p := t

p := t
Flow sensitive vs. insensitive

S1: \(l := \text{new Cons} \)

\[p := l \]

S2: \(t := \text{new Cons} \)

\[*p := t \]

\[p := t \]

Flow-sensitive Soln

Flow-insensitive Soln
What went wrong?

• What happened to the link between p and S1?
 – Can’t do strong updates anymore!
 – Need to remove all the kill sets from the flow functions.

• What happened to the self loop on S2?
 – We still have to iterate!
Flow insensitive pointer analysis: fixed

S1: l := new Cons

p := l

S2: t := new Cons

*p := t

p := t
This is Andersen’s algorithm ‘94

S1: \(l := \text{new Cons} \)

\[p := l \]

S2: \(t := \text{new Cons} \)

\[*p := t \]

\[p := t \]

Iter 1

\[l \rightarrow S1 \rightarrow t \]

\[p \rightarrow S1 \rightarrow S2 \]

Iter 2

\[l \rightarrow S1 \rightarrow S2 \]

\[p \rightarrow t \]

Iter 3

\[l \rightarrow S1 \rightarrow S2 \]

\[p \rightarrow t \]

This is Andersen’s algorithm ‘94

Final result

\[l \rightarrow S1 \rightarrow S2 \]

\[p \rightarrow t \]
Flow sensitive vs. insensitive, again

\begin{align*}
S1: & \quad l := \text{new Cons} \\
\quad & \quad p := l \\
S2: & \quad t := \text{new Cons} \\
\quad & \quad *p := t \\
\quad & \quad p := t
\end{align*}
Flow insensitive loss of precision

- Flow insensitive analysis leads to loss of precision!

```go
main() {
    x := &y;
    
    ... Flow insensitive analysis tells us that x may point to z here!
    
    x := &z;
}
```

- However:
 - uses less memory (memory can be a big bottleneck to running on large programs)
 - runs faster
In Class Exercise!

1. S1: p := new Cons
2. S2: q := new Cons
3. *p = q
4. r = &q
5. *q = r
6. s = r
7. *q = p
8. s = p
9. *r = s
10. q = &q
11. *q = p
12. s = r
13. *r = s
14. p = q
15. q = p
16. r = q
17. s = p
18. *r = s
19. p = q
20. q = p
21. r = q
22. s = p
23. *r = s
24. p = q
25. q = p
26. r = q
27. s = p
28. *r = s
In Class Exercise! solved

S1: p := new Cons

S2: q := new Cons

*p = q

r = &q

*q = r

s = r

*q = p

s = p

*r = s
Worst case complexity of Andersen

Worst case: \(N^2 \) per statement, so at least \(N^3 \) for the whole program. Andersen is in fact \(O(N^3) \)
New idea: one successor per node

• Make each node have only one successor.
• This is an invariant that we want to maintain.
More general case for $x^* = y$
More general case for $*x = y$
Handling: $x = *y$

\[\begin{align*}
 &x \\
 &\quad \downarrow \\
 &\quad y \\
 &\quad \downarrow \\
 &\quad \downarrow \\
 &\quad \downarrow \\
\end{align*} \]

$x = *y$
Handling: $x = *y$
Handling: $x = y$ (what about $y = x$?)

Handling: $x = &y$
Handling: $x = y$ (what about $y = x$?)

Handling: $x = \& y$
Our favorite example, once more!

S1: l := new Cons

p := l

S2: t := new Cons

*p := t

p := t
Our favorite example, once more!

S1: \(l := \text{new Cons} \)

1. \(l \)
2. \(p := l \)
3. S2: \(t := \text{new Cons} \)
4. \(*p := t \)
5. \(p := t \)

Diagram:

1. \(l \rightarrow S1 \)
2. \(l \rightarrow S1 \)
3. \(l \rightarrow S1 \)
4. \(l \rightarrow S2 \)
5. \(S1 \rightarrow S2 \)
Flow insensitive loss of precision

S1: l := new Cons

S2: t := new Cons

*p := t

p := t

Flow-sensitive Subset-based

Flow-insensitive Subset-based

Flow-insensitive Unification-based

S1, S2
Another example

```
bar() {
  1 i := &a;
  2 j := &b;
  3 foo(&i);
  4 foo(&j);
  // i pnts to what?
  *i := ...
}

void foo(int* p) {
  printf("%d",*p);
}
```
Another example

```c
bar() {
    ① i := &a;
    ② j := &b;
    ③ foo(&i);
    ④ foo(&j);
    // i pnts to what?
    *i := ...;
}

void foo(int* p) {
    printf("%d",*p);
}
```
Almost linear time

- Time complexity: $O(N\alpha(N, N))$
- So slow-growing, it is basically linear in practice
- For the curious: node merging implemented using UNION-FIND structure, which allows set union with amortized cost of $O(\alpha(N, N))$ per op. Take CSE 202 to learn more!
In Class Exercise!

S1: \(p := \text{new Cons} \)

S2: \(q := \text{new Cons} \)

\(*p = q \)

\(r = &q \)

\(*q = r \)

\(*q = p \)

\(s = r \)

\(s = p \)

\(*r = s \)
In Class Exercise! solved

S1: \(p := \text{new Cons} \)

\(r = \&q \)

\(s = r \)

\(s = p \)

\(*r = s \)

S2: \(q := \text{new Cons} \)

\(*p = q \)

\(*q = r \)

\(*q = p \)

\(q, S1, S2 \)

Steensgaard

Andersen
Advanced Pointer Analysis

- Combine flow-sensitive/flow-insensitive
- Clever data-structure design
- Context-sensitivity