Formalization of DFA using lattices
Recall worklist algorithm

let \(m \): map from edge to computed value at edge
let worklist: work list of nodes

for each edge \(e \) in CFG do
 \(m(e) := \emptyset \)

for each node \(n \) do
 worklist.add(n)

while (worklist.empty.not) do
 let \(n := \) worklist.remove_any;
 let info_in := \(m(n.\text{incoming_edges}) \);
 let info_out := \(F(n, \text{info_in}) \);
 for \(i := 0 \ldots \) info_out.length do
 let new_info := \(m(n.\text{outgoing_edges}[i]) \cup \text{info_out}[i] \);
 if \((m(n.\text{outgoing_edges}[i]) \neq \text{new_info}) \)
 \(m(n.\text{outgoing_edges}[i]) := \text{new_info} \);
 worklist.add(n.\text{outgoing_edges}[i].dst);
Using lattices

• We formalize our domain with a powerset lattice
• What should be top and what should be bottom?
Using lattices

• We formalize our domain with a powerset lattice
• What should be top and what should be bottom?
• Does it matter?
 – It matters because, as we’ve seen, there is a notion of approximation, and this notion shows up in the lattice
Using lattices

• Unfortunately:
 – dataflow analysis community has picked one direction
 – abstract interpretation community has picked the other

• We will work with the abstract interpretation direction

• Bottom is the most precise (optimistic) answer, Top the most imprecise (conservative)
Direction of lattice

• Always safe to go up in the lattice
• Can always set the result to \top
• Hard to go down in the lattice
• Bottom will be the empty set in reaching defs
let m: map from edge to computed value at edge
let worklist: work list of nodes

for each edge e in CFG do
 m(e) := ⊥

for each node n do
 worklist.add(n)

while (worklist.empty.not) do
 let n := worklist.remove_any;
 let info_in := m(n.incoming_edges);
 let info_out := F(n, info_in);
 for i := 0 .. info_out.length do
 let new_info := m(n.outgoing_edges[i]) △
 info_out[i];
 if (m(n.outgoing_edges[i]) ≠ new_info))
 m(n.outgoing_edges[i]) := new_info;
 worklist.add(n.outgoing_edges[i].dst);
Termination of this algorithm?

• For reaching definitions, it terminates...

• Why?
 – lattice is finite

• Can we loosen this requirement?
 – Yes, we only require the lattice to have a finite height

• Height of a lattice: length of the longest ascending or descending chain

• Height of lattice \((2^S, \subseteq) = \)
Termination of this algorithm?

• For reaching definitions, it terminates...

• Why?
 – lattice is finite

• Can we loosen this requirement?
 – Yes, we only require the lattice to have a finite height

• Height of a lattice: length of the longest ascending or descending chain

• Height of lattice \((2^S, \subseteq) = | S |\)
Termination

Still, it’s annoying to have to perform a join in the worklist algorithm

```
while (worklist.empty.not) do
    let n := worklist.remove_any;
    let info_in := m(n.incoming_edges);
    let info_out := F(n, info_in);
    for i := 0 .. info_out.length do
        let new_info := m(n.outgoing_edges[i]) △ info_out[i];
        if (m(n.outgoing_edges[i]) ≠ new_info)
            m(n.outgoing_edges[i]) := new_info;
            worklist.add(n.outgoing_edges[i].dst);
```

It would be nice to get rid of it, if there is a property of the flow functions that would allow us to do so
Even more formal

- To reason more formally about termination and precision, we re-express our worklist algorithm mathematically.

- We will use fixed points to formalize our algorithm.
Fixed points

• Recall, we are computing m, a map from edges to dataflow information

• Define a global flow function F as follows: F takes a map m as a parameter and returns a new map m', in which individual local flow functions have been applied
Fixed points

• We want to find a fixed point of F, that is to say a map m such that m = F(m)

• Approach to doing this?

• Define \(\overline{\bot} \), which is \(\bot \) lifted to be a map:
 \[
 \overline{\bot} = \lambda \ e. \ \bot
 \]

• Compute F(\(\overline{\bot} \)), then F(F(\(\overline{\bot} \))), then F(F(F(\(\overline{\bot} \))))), ... until the result doesn’t change anymore
Fixed points

• Formally:

\[\text{Soln} = \bigcap_{i=0}^{\infty} F^i(\perp) \]

• Outer join has same role here as in worklist algorithm: guarantee that results keep increasing

• BUT: if the sequence \(F^i(\perp) \) for \(i = 0, 1, 2 \ldots \) is increasing, we can get rid of the outer join!

• How? Require that \(F \) be monotonic:
 - \(\forall \ a, \ b . \ a \sqsubseteq b \Rightarrow F(a) \sqsubseteq F(b) \)
Fixed points
Fixed points

\[\tilde{I} \subseteq F(\tilde{I}) \]
\[F(\tilde{I}) \subseteq F(F(\tilde{I})) \]
\[F^k(\tilde{I}) \subseteq F^{k+1}(\tilde{I}) \]
\[F^{k+1}(\tilde{I}) \subseteq F^{k+2}(\tilde{I}) \]
Back to termination

• So if F is monotonic, we have what we want: finite height \Rightarrow termination, without the outer join

• Also, if the local flow functions are monotonic, then global flow function F is monotonic
Another benefit of monotonicity

• Suppose Marsians came to earth, and miraculously give you a fixed point of F, call it f_p.

• Then:
Another benefit of monotonicity

- Suppose Marsians came to earth, and miraculously give you a fixed point of F, call it f_p.

- Then:

\[
\begin{align*}
\text{If } x & \leq f_p \\
F(x) & \leq F(f_p) \\
F(F(x)) & \leq f_p \\
F^n(x) & \leq f_p \\
0 & \leq f_p
\end{align*}
\]
Another benefit of monotonicity

- We are computing the least fixed point...
Recap

• Let’s do a recap of what we’ve seen so far

• Started with worklist algorithm for reaching definitions
Worklist algorithm for reaching defns

let m: map from edge to computed value at edge
let worklist: work list of nodes

for each edge e in CFG do
 m(e) := ∅

for each node n do
 worklist.add(n)

while (worklist.empty.not) do
 let n := worklist.remove_any;
 let info_in := m(n.incoming_edges);
 let info_out := F(n, info_in);
 for i := 0 .. info_out.length do
 let new_info := m(n.outgoing_edges[i]) U info_out[i];
 if (m(n.outgoing_edges[i]) ≠ new_info)
 m(n.outgoing_edges[i]) := new_info;
 worklist.add(n.outgoing_edges[i].dst);
Generalized algorithm using lattices

let m: map from edge to computed value at edge
let worklist: work list of nodes

for each edge e in CFG do
 m(e) := ⊥

for each node n do
 worklist.add(n)

while (worklist.empty.not) do
 let n := worklist.remove_any;
 let info_in := m(n.incoming_edges);
 let info_out := F(n, info_in);
 for i := 0 .. info_out.length do
 let new_info := m(n.outgoing_edges[i]) ∪ info_out[i];
 if (m(n.outgoing_edges[i]) ≠ new_info))
 m(n.outgoing_edges[i]) := new_info;
 worklist.add(n.outgoing_edges[i].dst);
Next step: removed outer join

• Wanted to remove the outer join, while still providing termination guarantee

• To do this, we re-expressed our algorithm more formally

• We first defined a “global” flow function F, and then expressed our algorithm as a fixed point computation
Guarantees

• If F is monotonic, don’t need outer join

• If F is monotonic and height of lattice is finite: iterative algorithm terminates

• If F is monotonic, the fixed point we find is the least fixed point.
What about if we start at top?

- What if we start with \(\tilde{T} : F(\tilde{T}), F(F(\tilde{T})), F(F(F(\tilde{T}))) \)
What about if we start at top?

• What if we start with $\tilde{T} \mapsto F(\tilde{T})$, $F(F(\tilde{T}))$, $F(F(F(\tilde{T})))$

• We get the greatest fixed point

• Why do we prefer the least fixed point?
 – More precise
Graphically
Graphically
Graphically, another way