Formalization of DFA using lattices
Recall worklist algorithm

let m: map from edge to computed value at edge
let worklist: work list of nodes

for each edge e in CFG do
 m(e) := \emptyset \leftarrow 1

for each node n do
 worklist.add(n)

while (worklist.empty.not) do
 let n := worklist.remove.any;
 let info_in := m(n.incoming_edges);
 let info_out := F(n, info_in);
 for i := 0 . . . info_out.length do
 let new_info := m(n.outgoing_edges[i]) \cup
 info_out[i];
 if (m(n.outgoing_edges[i]) \neq new_info))
 m(n.outgoing_edges[i]) := new_info;
 worklist.add(n.outgoing_edges[i].dst);
Using lattices

- We formalize our domain with a powerset lattice
- What should be top and what should be bottom?
Using lattices

- We formalize our domain with a powerset lattice
- What should be top and what should be bottom?
- Does it matter?
 - It matters because, as we’ve seen, there is a notion of approximation, and this notion shows up in the lattice
Using lattices

• Unfortunately:
 – dataflow analysis community has picked one direction
 – abstract interpretation community has picked the other

• We will work with the abstract interpretation direction

• Bottom is the most precise (optimistic) answer, Top the most imprecise (conservative)
Direction of lattice

- Always safe to go up in the lattice
- Can always set the result to \Top
- Hard to go down in the lattice
- Bottom will be the empty set in reaching defs
Worklist algorithm using lattices

let m: map from edge to computed value at edge
let worklist: work list of nodes

for each edge e in CFG do
 m(e) := ⊥

for each node n do
 worklist.add(n)

while (worklist.empty.not) do
 let n := worklist.remove_any;
 let info_in := m(n.incoming_edges);
 let info_out := F(n, info_in);
 for i := 0 .. info_out.length do
 let new_info := m(n.outgoing_edges[i]) △ info_out[i];
 if (m(n.outgoing_edges[i]) ≠ new_info))
 m(n.outgoing_edges[i]) := new_info;
 worklist.add(n.outgoing_edges[i].dst);
Termination of this algorithm?

• For reaching definitions, it terminates...

• Why?
 – lattice is finite

• Can we loosen this requirement?
 – Yes, we only require the lattice to have a finite height

• Height of a lattice: length of the longest ascending or descending chain

• Height of lattice \((2^S, \subseteq) =\)
Termination of this algorithm?

• For reaching definitions, it terminates...

• Why?
 – lattice is finite

• Can we loosen this requirement?
 – Yes, we only require the lattice to have a finite height

• Height of a lattice: length of the longest ascending or descending chain

• Height of lattice \((2^S, \subseteq) = | S |\)
Termination

• Still, it’s annoying to have to perform a join in the worklist algorithm

```plaintext
while (worklist.empty.not) do
    let n := worklist.remove_any;
    let info_in := m(n.incoming_edges);
    let info_out := F(n, info_in);
    for i := 0 .. info_out.length do
        let new_info := m(n.outgoing_edges[i]) ⊔ info_out[i];
        if (m(n.outgoing_edges[i]) ≠ new_info)
            m(n.outgoing_edges[i]) := new_info;
        worklist.add(n.outgoing_edges[i].dst);
```

• It would be nice to get rid of it, if there is a property of the flow functions that would allow us to do so
Even more formal

• To reason more formally about termination and precision, we re-express our worklist algorithm mathematically

• We will use fixed points to formalize our algorithm
Fixed points

• Recall, we are computing m, a map from edges to dataflow information

• Define a global flow function F as follows: F takes a map m as a parameter and returns a new map m', in which individual local flow functions have been applied

$$F(m) = m$$
Fixed points

- We want to find a fixed point of F, that is to say a map m such that $m = F(m)$
- Approach to doing this?
- Define $\tilde{\bot}$, which is \bot lifted to be a map: $\tilde{\bot} = \lambda e. \bot$
- Compute $F(\tilde{\bot})$, then $F(F(\tilde{\bot}))$, then $F(F(F(\tilde{\bot})))$, ... until the result doesn’t change anymore
Fixed points

• Formally:
 \[\text{Soln} = \bigcup_{i=0}^{\infty} F^i(\perp) \]

• Outer join has same role here as in worklist algorithm: guarantee that results keep increasing

• BUT: if the sequence \(F^i(\perp) \) for \(i = 0, 1, 2 \ldots \) is increasing, we can get rid of the outer join!

• How? Require that \(F \) be monotonic:
 \[\forall a, b . \ a \sqsubseteq b \Rightarrow F(a) \sqsubseteq F(b) \]
Fixed points

$\bot \in F(\bot)$

$F(\bot) \subseteq F(F(\bot))$

$FF(\bot) \subseteq FFF(\bot)$
Fixed points

\[\tilde{I} \notin F(\tilde{I}) \]
\[F(\tilde{I}) \notin F(F(\tilde{I})) \]
\[F^k(\tilde{I}) \notin F^{k+1}(\tilde{I}) \]
\[F^{k+1}(\tilde{I}) \notin F^{k+2}(\tilde{I}) \]
Back to termination

- So if F is monotonic, we have what we want: finite height \implies termination, without the outer join.

- Also, if the local flow functions are monotonic, then global flow function F is monotonic.
Another benefit of monotonicity

• Suppose Marsians came to earth, and miraculously give you a fixed point of F, call it fp.

• Then:

\[
\begin{align*}
\perp & \models fp \\
F(\perp) & \models fp \\
F(F(\perp)) & \models fp \\
\vdots \\
ofp & \models fp
\end{align*}
\]
Another benefit of monotonicity

• Suppose Marsians came to earth, and miraculously give you a fixed point of F, call it fp.

• Then:

\[
\begin{align*}
\tilde{I} & \subseteq fp \\
F(\tilde{I}) & \subseteq F(fp) \\
F(\tilde{I}) & \subseteq fp \\
F^2(\tilde{I}) & \subseteq fp \\
& \vdots \\
ofp & \subseteq fp
\end{align*}
\]
Another benefit of monotonicity

• We are computing the least fixed point...
Recap

• Let’s do a recap of what we’ve seen so far

• Started with worklist algorithm for reaching definitions
let m: map from edge to computed value at edge
let worklist: work list of nodes

for each edge e in CFG do
 m(e) := ∅

for each node n do
 worklist.add(n)

while (worklist.empty.not) do
 let n := worklist.remove_any;
 let info_in := m(n.incoming_edges);
 let info_out := F(n, info_in);
 for i := 0 .. info_out.length do
 let new_info := m(n.outgoing_edges[i]) ∪ info_out[i];
 if (m(n.outgoing_edges[i]) ≠ new_info)
 m(n.outgoing_edges[i]) := new_info;
 worklist.add(n.outgoing_edges[i].dst);
Generalized algorithm using lattices

let m: map from edge to computed value at edge
let worklist: work list of nodes

for each edge e in CFG do
 m(e) := ⊥

for each node n do
 worklist.add(n)

while (worklist.empty.not) do
 let n := worklist.remove_any;
 let info_in := m(n.incoming_edges);
 let info_out := F(n, info_in);
 for i := 0 .. info_out.length do
 let new_info := m(n.outgoing_edges[i]) ⊔
 info_out[i];
 if (m(n.outgoing_edges[i]) ≠ new_info))
 m(n.outgoing_edges[i]) := new_info;
 worklist.add(n.outgoing_edges[i].dst);
Next step: removed outer join

• Wanted to remove the outer join, while still providing termination guarantee

• To do this, we re-expressed our algorithm more formally

• We first defined a “global” flow function F, and then expressed our algorithm as a fixed point computation
Guarantees

• If F is monotonic, don’t need outer join
• If F is monotonic and height of lattice is finite: iterative algorithm terminates
• If F is monotonic, the fixed point we find is the least fixed point.
What about if we start at top?

- What if we start with $\top: F(\top), F(F(\top)), F(F(F(\top)))$

\[
F(\top) \subseteq T \\
F(F(\top)) \subseteq F(\top) \\
F(P) \subseteq T
\]
What about if we start at top?

- What if we start with \tilde{T}: $F(\tilde{T}), F(F(\tilde{T})), F(F(F(\tilde{T})))$?
- We get the greatest fixed point.
- Why do we prefer the least fixed point?
 - More precise.
Graphically

\[a \leq b \Rightarrow F(a) \leq F(b) \]
Graphically
Graphically
Graphically, another way