Formalization of DFA using lattices

Recall worklist algorithm

let m: map from edge to computed value at edge
let worklist: work list of nodes

for each edge e in CFG do
 m(e) := \emptyset

for each node n do
 worklist.add(n)

while (worklist.empty.not) do
 let n := worklist.remove_any;
 let info_in := m(n.incoming_edges);
 let info_out := F(n, info_in);
 for i := 0 .. info_out.length do
 let new_info := m(n.outgoing_edges[i])
 info_out[i] := info_out[i]
 if (m(n.outgoing_edges[i]) \neq new_info)
 m(n.outgoing_edges[i]) := new_info;
 worklist.add(n.outgoing_edges[i].dst);

Using lattices

• We formalize our domain with a powerset lattice
• What should be top and what should be bottom?

Using lattices

• We formalize our domain with a powerset lattice
• What should be top and what should be bottom?
• Does it matter?
 – It matters because, as we’ve seen, there is a notion of approximation, and this notion shows up in the lattice

Using lattices

• Unfortunately:
 – dataflow analysis community has picked one direction
 – abstract interpretation community has picked the other
• We will work with the abstract interpretation direction
• Bottom is the most precise (optimistic) answer, Top the most imprecise (conservative)

Direction of lattice

• Always safe to go up in the lattice
• Can always set the result to \top
• Hard to go down in the lattice
• Bottom will be the empty set in reaching defs
Worklist algorithm using lattices

let m: map from edge to computed value at edge
let worklist: work list of nodes

for each edge e in CFG do
 m(e) := ⊥
for each node n do
 worklist.add(n)

while (worklist.empty.not) do
 let n := worklist.remove_any;
 let info_in := m(n.incoming_edges);
 let info_out := F(n, info_in);
 for i := 0 .. info_out.length do
 let new_info := m(n.outgoing_edges[i])
 if (m(n.outgoing_edges[i]) ≠ new_info)
 m(n.outgoing_edges[i]) := new_info;
 worklist.add(n.outgoing_edges[i].dst);

Termination of this algorithm?

- For reaching definitions, it terminates...
- Why?
 - lattice is finite
- Can we loosen this requirement?
 - Yes, we only require the lattice to have a finite height
- Height of a lattice: length of the longest ascending or descending chain
- Height of lattice \((2^S, \subseteq) = \) |

Termination

- Still, it’s annoying to have to perform a join in the worklist algorithm

 while (worklist.empty.not) do
 let n := worklist.remove_any;
 let info_in := m(n.incoming_edges);
 let info_out := F(n, info_in);
 for i := 0 .. info_out.length do
 let new_info := m(n.outgoing_edges[i])
 if (m(n.outgoing_edges[i]) ≠ new_info)
 m(n.outgoing_edges[i]) := new_info;
 worklist.add(n.outgoing_edges[i].dst);

Even more formal

- To reason more formally about termination and precision, we re-express our worklist algorithm mathematically

 We will use fixed points to formalize our algorithm

Fixed points

- Recall, we are computing \(m \), a map from edges to dataflow information
- Define a global flow function \(F \) as follows: \(F \) takes a map \(m \) as a parameter and returns a new map \(m' \), in which individual local flow functions have been applied

 \[
 F(m) = m'
 \]
Fixed points

- We want to find a fixed point of F, that is to say a map m such that $m = F(m)$

- Approach to doing this?
 - Define \bot, which is \bot lifted to be a map:
 \[
 \bot = \lambda e. \bot
 \]
 - Compute $F(\bot)$, then $F(F(\bot))$, then $F(F(F(\bot)))$, ... until the result doesn’t change anymore

Fixed points

- Formally:
 \[
 \text{Sdw} = \bigcup_{i=0}^{\infty} F^i(\bot)
 \]

- Outer join has same role here as in worklist algorithm: guarantee that results keep increasing

- BUT: if the sequence $F(\bot)$ for $i = 0, 1, 2 ...$ is increasing, we can get rid of the outer join!

- How? Require that F be monotonic:
 \[\forall a, b . a \subseteq b \Rightarrow F(a) \subseteq F(b)\]

Fixed points

\[
\begin{align*}
\bot & \subseteq F(\bot) \\
F(\bot) & \subseteq F(F(\bot)) \\
F(F(\bot)) & \subseteq F(F(F(\bot)))
\end{align*}
\]

Fixed points

\[
\begin{align*}
\bot & \subseteq F(\bot) \\
F(\bot) & \subseteq F(F(\bot)) \\
F(F(\bot)) & \subseteq F(F(F(\bot)))
\end{align*}
\]

\[
\begin{align*}
F^k(\bot) & \subseteq F^{k+1}(\bot) \\
F^{k+1}(\bot) & \subseteq F^{k+2}(\bot)
\end{align*}
\]

Back to termination

- So if F is monotonic, we have what we want: finite height \Rightarrow termination, without the outer join

- Also, if the local flow functions are monotonic, then global flow function F is monotonic

Another benefit of monotonicity

- Suppose Marsians came to earth, and miraculously give you a fixed point of F, call it fp.

- Then:

\[
\begin{align*}
\bot & \subseteq fp \\
F(\bot) & \subseteq fp \\
F(F(\bot)) & \subseteq fp \\
& \vdots \\
F^{n}(\bot) & \subseteq fp
\end{align*}
\]
Another benefit of monotonicity
• Suppose Marsians came to earth, and miraculously give you a fixed point of F, call it fp.
• Then:
 \[
 I \subseteq fp \\
 F(I) \subseteq F(fp) \\
 F^\omega(I) \subseteq fp \\
 \sigma fp \subseteq fp
 \]

Recap
• Let’s do a recap of what we’ve seen so far
• Started with worklist algorithm for reaching definitions

Generalized algorithm using lattices
```lang
let m: map from edge to computed value at edge
let worklist: work list of nodes
for each edge e in CFG do
  m(e) := \emptyset
for each node n do
  worklist.add(n)
while (worklist.empty.not) do
  let n := worklist.remove_any;
  let info_in := m(n.incoming_edges);
  let info_out := F(n, info_in);
  for i := 0 .. info_out.length do
    let new_info := m(n.outgoing_edges[i]) \[ info_out[i] 
    if (m(n.outgoing_edges[i]) \neq new_info)
      m(n.outgoing_edges[i]) := new_info;
  worklist.add(n.outgoing_edges[i].dst);
```

Another benefit of monotonicity
• We are computing the least fixed point...

Worklist algorithm for reaching defns
```lang
let m: map from edge to computed value at edge
let worklist: work list of nodes
for each edge e in CFG do
  m(e) := \emptyset
for each node n do
  worklist.add(n)
while (worklist.empty.not) do
  let n := worklist.remove_any;
  let info_in := m(n.incoming_edges);
  let info_out := F(n, info_in);
  for i := 0 .. info_out.length do
    let new_info := m(n.outgoing_edges[i]) \[ info_out[i] 
    if (m(n.outgoing_edges[i]) \neq new_info)
      m(n.outgoing_edges[i]) := new_info;
  worklist.add(n.outgoing_edges[i].dst);
```

Next step: removed outer join
• Wanted to remove the outer join, while still providing termination guarantee
• To do this, we re-expressed our algorithm more formally
• We first defined a "global" flow function F, and then expressed our algorithm as a fixed point computation
Guarantees

- If F is monotonic, don’t need outer join
- If F is monotonic and height of lattice is finite: iterative algorithm terminates
- If F is monotonic, the fixed point we find is the least fixed point.

What about if we start at top?

- What if we start with $\tilde{T}: F(\tilde{T}), F(F(\tilde{T})), F(F(F(\tilde{T})))$?

Graphically

What about if we start at top?

- What if we start with $\tilde{T}: F(\tilde{T}), F(F(\tilde{T})), F(F(F(\tilde{T})))$?
- We get the greatest fixed point
- Why do we prefer the least fixed point?
 - More precise
Graphically, another way