Performance and asymptotics

<table>
<thead>
<tr>
<th>Lecture A</th>
<th>Tiefenbruck</th>
<th>Tu, Th 11am-12:20pm</th>
<th>Center 119</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture B</td>
<td>Tiefenbruck</td>
<td>Tu, Th 9:30am-10:50am</td>
<td>Center 119</td>
</tr>
<tr>
<td>Lecture C</td>
<td>Minnes</td>
<td>Tu, Th 3:30pm-4:50pm</td>
<td>WLH 2005</td>
</tr>
</tbody>
</table>

http://cseweb.ucsd.edu/classes/fa15/cse21-abc/

Oct 1, 2015
General questions to ask about algorithms

1) **What** problem are we solving? **SPECIFICATION**

2) **How** do we solve the problem? **ALGORITHM DESCRIPTION**

3) **Why** do these steps solve the problem? **CORRECTNESS**

4) **When** do we get an answer? **RUNNING TIME PERFORMANCE**
Counting comparisons: WHEN

Measure ...

Time

Number of operations

For selection sort (MinSort), how many times do we have to compare the values of some pair of list elements?
Selection Sort (MinSort) Pseudocode

Rosen page 203, exercises 41-42

procedure selection sort(a₁, a₂, ..., aₙ: real numbers with n ≥ 2)

for i := 1 to n-1
 m := i
 for j := i+1 to n
 if (aⱼ < aᵢ) then m := j
 interchange aᵢ and aₘ

{ a₁, ..., aₙ is in increasing order}

For each value of i, compare (n-i) pairs of elements.

Sum of positive integers up to (n-1)

\((n-1) + (n-2) + ... + 1\)

\= \frac{n(n-1)}{2}
Counting operations

When do we get an answer? RUNNING TIME PERFORMANCE

Counting number of times list elements are compared
Runtime performance

Algorithm: problem solving strategy as a sequence of steps

Examples of steps
- Comparing list elements (which is larger?)
- Accessing a position in a list (probe for value)
- Arithmetic operation (+, -, *, …)
- etc.

"Single step" depends on context
Runtime performance

How long does a "single step" take?

Some factors
- Hardware
- Software

Discuss & list the factors that could impact how long a single step takes
Runtime performance

How long does a "single step" take?

Some factors
- Hardware (CPU, climate, cache …)
- Software (programming language, compiler)
The time our program takes will depend on

Number of steps the algorithm requires

Time for each of these steps on our system

Input (size and ???)
Runtime performance

Goal:

Ignore what we can't control

Estimate time as a function of the size of the input, n

Focus on how time scales for large inputs
Rate of growth

Ignore what we can't control

Focus on how time scales for large inputs

Which of these functions have the "same" rate of growth?

A. All of them
B. 2^n and n^2
C. n^2 and $3n^2$
D. They're all different
Ignore what we can't control

Focus on how time scales for large inputs

For functions $f(n) : \mathbb{N} \to \mathbb{R}$, $g(n) : \mathbb{N} \to \mathbb{R}$ we say

$$f(n) \in O(g(n))$$

To mean there are constants, C and k such that

$$|f(n)| \leq C|g(n)| \quad \text{for all } n > k.$$

Rosen p. 205
Definition of Big O

For functions $f(n) : \mathbb{N} \to \mathbb{R}$, $g(n) : \mathbb{N} \to \mathbb{R}$ we say

$$f(n) \in O(g(n))$$

to mean there are constants, C and k such that

$$|f(n)| \leq C|g(n)| \quad \text{for all } n > k.$$
Definition of Big O

For functions $f(n) : \mathbb{N} \to \mathbb{R}, g(n) : \mathbb{N} \to \mathbb{R}$ we say $f(n) \in O(g(n))$

$$\begin{align} |f(n)| & \leq C|g(n)| \quad \text{for all } n > k. \end{align}$$

to mean there are constants, C and k such that $|3n^2 + 2n| \leq 5|n^2|$ for $n > 1$ and $|3n^2 + 2n| \leq 10|n^2|$ for $n > 2$.

Example:

$$f(n) = 3n^2 + 2n \quad g(n) = n^2$$

What constants can we use to prove that $f(n) \in O(g(n))$?

A. $C = 1/3$, $k = 2$
B. $C = 5$, $k = 1$
C. $C = 10$, $k = 2$
D. None: $f(n)$ isn't big O of $g(n)$.

f grows no faster than g.
"f(n) is big O of g(n)"

\[f(n) \in O(g(n)) \]

A family of functions which grow no faster than g(n)

What functions are in the family \(O(n^2) \)?

- \(3n^2 + 2n \)
- \(an^2 + bn + c \) where \(b \cdot n + c \)
- \(5n \)
- \(5n + 6 \)
- \(\log_2 n \)
- \(\ln n \) (constant)
- \(n \cdot \log_2 n \)
- \(\sqrt{n} \)
- \(n^{3/2} \)
- \(1.999 \)

Includes functions that grow slower than \(n \), vs. \(n^2 \).
Big O : Potential pitfalls

"f(n) is big O of g(n)"

$$f(n) \in O(g(n))$$

• The **value** of f(n) might always be bigger than the **value** of g(n).

• O(g(n)) contains functions that grow **strictly slower** than g(n).

ex.) $3n^2 + 2n \in O(n^2)$ but actually $3n^2 + 2n > n^2$ for every value of n.
Big O : How to compute?

Is \(f(n) \) big O of \(g(n) \)? i.e. is \(f(n) \in O(g(n)) \)?

Approach 1: Look for constants \(C \) and \(k \).

Approach 2: Use properties

- **Domination**: If \(f(n) \leq g(n) \) for all \(n \) then \(f(n) \) is big-O of \(g(n) \).
- **Transitivity**: If \(f(n) \) is big-O of \(g(n) \), and \(g(n) \) is big-O of \(h(n) \), then \(f(n) \) is big-O of \(h(n) \).
- **Additivity/Multiplicativity**: If \(f(n) \) is big-O of \(g(n) \), and if \(h(n) \) is nonnegative, then \(f(n) \cdot h(n) \) is big-O of \(g(n) \cdot h(n) \) … where \(\cdot \) is either addition or multiplication.
- **Sum is maximum**: \(f(n)+g(n) \) is big-O of the \(\max(f(n), g(n)) \)
- **Ignoring constants**: For any constant \(c \), \(cf(n) \) is big-O of \(f(n) \)

Rosen p. 210-213
Is \(f(n) \) big O of \(g(n) \)? i.e. is \(f(n) \in O(g(n)) \)?

Approach 1: Look for constants \(C \) and \(k \).

Approach 2: Use properties

- **Domination**

 If \(f(n) \leq g(n) \) for all \(n \), then \(f(n) \) is big-O of \(g(n) \).

- **Transitivity**

 If \(f(n) \) is big-O of \(g(n) \), and \(g(n) \) is big-O of \(h(n) \), then \(f(n) \) is big-O of \(h(n) \).

- **Additivity/Multiplicativity**

 If \(f(n) \) is big-O of \(g(n) \), and \(h(n) \) is nonnegative, then \(f(n) \cdot h(n) \) is big-O of \(g(n) \cdot h(n) \) where \(\ast \) is addition or multiplication.

- **Sum is maximum**

 \(f(n) + g(n) \) is big-O of the max \((f(n), g(n)) \).

- **Ignoring constants**

 For any constant \(c \), \(c \cdot f(n) \) is big-O of \(f(n) \).

Rosen p. 210-213
Is \(f(n) \) big \(O \) of \(g(n) \)? i.e. is \(f(n) \in O(g(n)) \)?

Approach 3. The limit method. Consider the limit

\[
\lim_{n \to \infty} \frac{f(n)}{g(n)}.
\]

I. If this limit exists and is 0: then \(f(n) \) grows strictly slower than \(g(n) \).

II. If this limit exists and is a constant \(c > 0 \): then \(f(n) \), \(g(n) \), grow at the same rate.

III. If the limit tends to infinity: then \(f(n) \) grows strictly faster than \(g(n) \).

IV. if the limit doesn't exist for a different reason … use another approach!

In which cases can we conclude \(f(n) \in O(g(n)) \)?

A. I, II, III
B. I, III
C. I, II
D. None of the above

I. If this limit exists and is 0: then \(f(n) \) grows strictly slower than \(g(n) \).
 - Correct

II. If this limit exists and is a constant \(c > 0 \): then \(f(n) \), \(g(n) \), grow at the same rate.
 - Correct

III. If the limit tends to infinity: then \(f(n) \) grows strictly faster than \(g(n) \).
 - Incorrect

IV. if the limit doesn't exist for a different reason … use another approach!
Other asymptotic classes

\[f(n) \in O(g(n)) \quad \text{upper bound} \]

\[f(n) \in \Omega(g(n)) \quad \text{lower bound} \]

\[f(n) \in \Theta(g(n)) \quad \text{upper + lower bound - same rate} \]

What functions are in the family \(\Theta(n^2) \)?

- \(5n^2 \)
- \(n^2 + n \)
- \(3n^2 + n \)
- \(2^{1/3} \)
- \(5 \log_2 n \)
Selection Sort (MinSort) Performance

Number of comparisons of list elements

\[(n-1) + (n-2) + \ldots + (1) = \frac{n(n-1)}{2}\]

Rewrite this formula in order notation:

A. \(O(n)\)
B. \(O(n(n-1))\)
C. \(O(n^2)\)
D. \(O(1/2)\)
E. None of the above
Linear Search: HOW

Starting at the beginning of the list, compare items one by one with x until find it or reach the end.

procedure linear search (x: integer, a_1, a_2, ..., a_n: distinct integers)
 i := 1
 while (i <= n and x ≠ a_i)
 i := i+1
 if i <=n then location := i
 else location := 0
 return location

{ location is the subscript of the term that equals x, or is 0 if x is not found }
The time it takes to find \(x \) (or determine it is not present) depends on the number of \textit{probes}, that is the number of list entries we have to retrieve and compare to \(x \).

Rosen page 220, part of example 2

How many probes do we make when doing Linear Search on a list of size \(n \)?

- if \(x \) happens to equal the \textbf{first} element in the list? \(1 \)
- if \(x \) happens to equal the \textbf{last} element in the list? \(n \)
- if \(x \) happens to equal an element somewhere in the \textbf{middle} of the list? \(\frac{1}{2}n \) \(\text{(average)} \)
- if \(x \) \textbf{doesn't equal any} element in the list? \(n \)
How fast is Linear Search: WHEN

Best case: 1 probe \(\text{target appears first} \)

Worst case: \(n \) probes \(\text{target appears last or not at all} \)

Average case: \(n/2 \) probes \(\text{target appears in the middle,} \)
(\(\text{expect to have to search about half of the array ... more on} \) expected value later in the course)

Running time depends on more than size of the input!

Rosen p. 220
procedure binary search (x: integer, a_1, a_2, ..., a_n: increasing integers)
i := 1
j := n
while i<j
 m := floor((i+j)/2)
 if x > a_m then i := m+1
 else j := m
if x=a_i then location := i
else location := 0
return location

{ location is the subscript of the term that equals x, or is 0 if x is not found }
How fast is Binary Search: WHEN

Rosen page 220, example 3

Number of comparisons (probes) depends on number of iterations of loop, hence size of set.

<table>
<thead>
<tr>
<th>After ... iterations of loop</th>
<th>(Max) size of list "in play"</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>n</td>
</tr>
<tr>
<td>1</td>
<td>n/2</td>
</tr>
<tr>
<td>2</td>
<td>n/4</td>
</tr>
<tr>
<td>3</td>
<td>n/8</td>
</tr>
<tr>
<td>(w)</td>
<td>(n/2^w)</td>
</tr>
<tr>
<td>??</td>
<td>1</td>
</tr>
</tbody>
</table>

\[n = 2^w \implies w = \log_2 n \]
Number of comparisons (probes) depends on number of iterations of loop, hence size of set.

<table>
<thead>
<tr>
<th>After ... iterations of loop</th>
<th>(Max) size of list "in play"</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>n</td>
</tr>
<tr>
<td>1</td>
<td>$n/2$</td>
</tr>
<tr>
<td>2</td>
<td>$n/4$</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>ceil(log$_2$ n)</td>
<td></td>
</tr>
</tbody>
</table>

Rewrite this formula in order notation:

(A) $\Theta(\log n)$
(B) $\Theta(\log n + 1)$
(C) $\Theta(n)$
(D) $\Theta(\log_{10} n)$
(E) None of the above
Comparing linear search and binary search

Rosen pages 220-221

<table>
<thead>
<tr>
<th>Assumptions</th>
<th>Linear Search</th>
<th>Binary Search</th>
</tr>
</thead>
<tbody>
<tr>
<td># probes in</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* best case</td>
<td>(\Theta(1))</td>
<td>(\Theta(1)) or (\Theta(\log n))</td>
</tr>
<tr>
<td>* worst case</td>
<td>(\Theta(n))</td>
<td>(\Theta(\log n))</td>
</tr>
<tr>
<td>* average case</td>
<td>(\Theta(n))</td>
<td>??</td>
</tr>
</tbody>
</table>

Best case analysis depends on whether we check if midpoint agrees with target right away or wait until list size gets to 1
Comparing linear search and binary search

Rosen pages 220-221

<table>
<thead>
<tr>
<th>Assumptions</th>
<th>Linear Search</th>
<th>Binary Search</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assumptions</td>
<td>None</td>
<td>Sorted list</td>
</tr>
<tr>
<td># probes in</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* best case</td>
<td>$\Theta(1)$</td>
<td>$\Theta(1)$ or $\Theta(\log n)$</td>
</tr>
<tr>
<td>* worst case</td>
<td>$\Theta(n)$</td>
<td>$\Theta(\log n)$</td>
</tr>
<tr>
<td>* average case</td>
<td>$\Theta(n)$</td>
<td>??</td>
</tr>
</tbody>
</table>
Comparing linear search and binary search

Rosen pages 220-221

<table>
<thead>
<tr>
<th></th>
<th>Linear Search</th>
<th>Binary Search</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assumptions</td>
<td>None</td>
<td>Sorted list</td>
</tr>
<tr>
<td># probes in</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* best case</td>
<td>$\Theta(1)$</td>
<td>$\Theta(1)$ or $\Theta(\log n)$</td>
</tr>
<tr>
<td>* worst case</td>
<td>$\Theta(n)$</td>
<td>$\Theta(\log n)$</td>
</tr>
<tr>
<td>* average case</td>
<td>$\Theta(n)$</td>
<td>??</td>
</tr>
</tbody>
</table>

Is it worth it to sort our list first?
Computing runtime performance of more complicated code and algorithms

- Consecutive code segments
- Nested code segments
Reminders

HW 2 due (tomorrow) **Friday 11:59pm**.

Assignment submission through **Gradescope** (see Piazza).