Today's Topics:

1. Strong vs regular induction
2. Strong induction examples:
 - Divisibility by a prime
 - Recursion sequence: product of fractions

1. Strong induction examples

DIVISIBILITY BY A PRIME

- Prove: \(\forall n \geq 1 \; P(n) \)
 - Base case: \(P(1) \)
 - Regular induction: \(P(n) \rightarrow P(n+1) \)

- Strong induction: \((P(1) \land \ldots \land P(n)) \rightarrow P(n+1) \)
 - Can use more assumptions to prove \(P(n+1) \)
Example for the power of strong induction

- **Theorem:** For all prices \(p \geq 8 \) cents, the price \(p \) can be paid using only 5-cent and 3-cent coins

- **Proof:**
 - **Base case:** \(8 = 3 + 5 \), \(9 = 3 + 3 + 3 \), \(10 = 5 + 5 \)
 - Assume it holds for all prices \(1 \ldots p-1 \), prove for price \(p \) when \(p \geq 11 \)
 - **Proof:** since \(p-3 \geq 8 \) we can use the inductive hypothesis for \(p-3 \). To get price \(p \) simply add another 3-cent coin.
 - Much easier than standard induction!

Example for the power of strong induction

- **Proof:**
 - **Base case:** \(8 = 3 + 5 \), \(9 = 3 + 3 + 3 \), \(10 = 5 + 5 \)
 - Assume it holds for all prices \(1 \ldots p-1 \), prove for price \(p \) when \(p \geq 11 \)
 - **Proof:** since \(p-3 \geq 8 \) we can use the inductive hypothesis for \(p-3 \). To get price \(p \) simply add another 3-cent coin.
 - This doesn’t give us an algorithm to make the change.
 - This gives us the corollary:
 - All prices \(p > 10 \) can be made with at least one three cent coin.

2. Strong induction examples

DIVISIBILITY BY A PRIME

Definitions and properties for this proof

- **Definitions:**
 - \(n \) is **prime** if \(\forall a,b \in \mathbb{N} : n = ab \rightarrow a = 1 \lor b = 1 \)
 - \(n \) is **composite** if \(n = ab \) for some \(1 < a,b < n \)

- **Prime or Composite exclusivity:**
 - All integers greater than 1 are either prime or composite (exclusive or—can’t be both).

- **Definition of divisible:**
 - \(n \) is divisible by \(d \) iff \(n = dk \) for some integer \(k \).

- **2 is prime** (you may assume this; it also follows from the definition).
Definitions and properties for this proof (cont.)

- Goes without saying at this point:
- The set of Integers is closed under addition and multiplication
- Use algebra as needed

10

Thm: For all integers n greater than 1, n is divisible by a prime number.

Proof (by strong mathematical induction):
Basis step: Show the theorem holds for n = ________.
Inductive step:
Assume [or “Suppose”] that
WTS that

So the inductive step holds, completing the proof.

11

A. 0
B. 1
C. 2
D. 3
E. Other/none/more than one

So the inductive step holds, completing the proof.

12

Thm: For all integers n greater than 1, n is divisible by a prime number.

Proof (by strong mathematical induction):
Basis step: Show the theorem holds for n = ________.
Inductive step:
Assume [or “Suppose”] that
WTS that

A. For some integer n>1, n is divisible by a prime number.
B. For some integer n>1, k is divisible by a prime number, for all integers k where 2≤k≤n.
C. Other/none/more than one

So the inductive step holds, completing the proof.
Thm: For all integers n greater than 1, n is divisible by a prime number.

Proof (by strong mathematical induction):
Basis step: Show the theorem holds for $n = 2$.
Inductive step:
Assume [or “Suppose”] that n is divisible by a prime number.
WTS that $n+1$ is divisible by a prime number.

So the inductive step holds, completing the proof.

2. Strong induction examples

Definitions and properties for this proof
- Product less than one:
 \[\forall a, b \in \mathbb{Q}, a, b < 1 \rightarrow a \cdot b < 1. \]
- Algebra, etc., as usual
Definition of the sequence:
\[d_1 = \frac{9}{10} \]
\[d_2 = \frac{10}{11} \]
\[d_k = d_{k-1}d_{k-2} \text{ for all integers } k \geq 3 \]

Then: For all integers \(n \in \mathbb{Z}, \, 0 < d_n < 1. \)

Proof (by strong mathematical induction):

Basis step: Show the theorem holds for \(n = \) ______.

Inductive step:
Assume [or “Suppose”] that \(0 < d_n < 1. \)

WTS that \(0 < d_{n+1} < 1. \)

So the inductive step holds, completing the proof.
Definition of the sequence:
\[d_1 = \frac{9}{10}, \quad d_2 = \frac{10}{11}, \quad d_k = (d_{k-1})(d_{k-2}) \text{ for all integers } k \geq 3 \]

Then: For all integers \(n \geq 0 \), \(0 < d_n < 1 \).

Proof (by strong mathematical induction):

Basis step: Show the theorem holds for \(n = 1, 2 \).

Inductive step: Assume [or “Suppose”] that the theorem holds for \(n \geq 2 \). WTS that \(0 < d_{n+1} < 1 \).

By definition, \(d_{n+1} = d_n d_{n-1} \).
By the inductive hypothesis, \(0 < d_{n-1} < 1 \) and \(0 < d_n < 1 \).
Hence, \(0 < d_{n+1} < 1 \).

So the inductive step holds, completing the proof.

3. Fibonacci numbers

Verifying a solution

Fibonacci numbers

- 1, 1, 2, 3, 5, 8, 13, 21, ...

Rule: \(F_1 = 1, \quad F_2 = 1, \quad F_n = F_{n-2} + F_{n-1} \).

Question: can we derive an expression for the \(n \)-th term?

YES! \(F_n = \frac{1 + \sqrt{5}}{2^n} \left(\frac{1 + \sqrt{5}}{2} \right) - \frac{1 - \sqrt{5}}{2^n} \left(\frac{1 - \sqrt{5}}{2} \right) \)

Proof by strong induction.

Base case:

A. \(n = 1 \)
B. \(n = 2 \)
C. \(n = 1 \) and \(n = 2 \)
D. \(n = 1 \) and \(n = 2 \) and \(n = 3 \)
E. Other

Fibonacci numbers

- Rule: \(F_1 = 1, \quad F_2 = 1, \quad F_n = F_{n-2} + F_{n-1} \).
- We will prove an upper bound:
 \[F_n \leq r^n, \quad r = \frac{1 + \sqrt{5}}{2} \]
- Proof by strong induction.

Fibonacci numbers

- Rule: $F_1=1$, $F_2=1$, $F_n=F_{n-2}+F_{n-1}$.
- We will prove an upper bound:

 $$F_n \leq r^n, \quad r = \frac{1 + \sqrt{5}}{2}$$

- Proof by strong induction.
- Base case:

 A. $n=1$
 B. $n=2$
 C. $n=1$ and $n=2$
 D. $n=1$, $n=2$ and $n=3$
 E. Other

Theorem:

- Base cases: $n=1$, $n=2$
- Inductive step: Assume $F_k = r^k$ for $1 \leq k < n$.
- Inductive step: Show...
Fibonacci numbers

- Rule: $F_1=1, F_2=1, F_n=F_{n-2}+F_{n-1}$.
- Theorem: $F_n \leq r^n, \quad r = \frac{1+\sqrt{5}}{2}$
- Base cases: $n=1, n=2$
- Inductive step: show...

Inductive step: need to show $F_n \leq r^n$.

What can we use?
- Definition of F_n: $F_n = F_{n-2} + F_{n-1}$
- Inductive hypothesis: $F_{n-1} \leq r^{n-1}, \quad F_{n-2} \leq r^{n-2}$

That is, we need to show that $r^{n-2} + r^{n-1} \leq r^n$

Finishing the inductive step.

- Need to show: $r^{n-2} + r^{n-1} \leq r^n$
- Simplifying, need to show: $1 + r \leq r^2$
- Choice of $r = \frac{1+\sqrt{5}}{2}$ actually satisfied $1 + r = r^2$

(this is why we chose it!)

QED