Today's Topics:
1. Relations
2. Equivalence relations
3. Modular arithmetics

Relations are graphs
- Think of relations as directed graphs
- xRy means “there in an edge x→y”

1. Relations

Options:
A. □ [red] R [yellow] ?
B. □ [yellow] R [red] ?
C. Both
D. Neither
Relations are graphs

What does this relation captures?
xRy means

A. x>y
B. x=y
C. x divides y
D. x+y
E. None/more than one

Types of relations

A relation is symmetric if xRy⇒yRx.
That is, if the graph is undirected

Which of the following is symmetric

A. x<y
B. x divides y
C. x and y have the same sign
D. x≠y
E. None/more than one

Types of relations

A relation is reflexive if xRx is true for all x
That is, the graph has loops in all vertices

Which of the following is reflexive

A. x<y
B. x divides y
C. x and y have the same sign
D. x≠y
E. None/more than one

Types of relations

A relation is transitive if xRy ∧ yRz ⇒ xRz
This is less intuitive… will show equivalent criteria soon

Which of the following is transitive

A. x<y
B. x divides y
C. x and y have the same sign
D. x≠y
E. None/more than one
Types of relations

- A relation is **transitive** if \(xRy \land yRz \Rightarrow xRz \)

- Theorem: Let \(G \) be the graph corresponding to a relation \(R \). \(R \) is transitive iff whenever you can reach from \(x \) to \(y \) in \(G \) then the edge \(x\rightarrow y \) is in \(G \).

 - **Try to prove yourself first**

Types of relations

- Theorem: \(R \) is transitive iff when you can reach from \(x \) to \(y \) in \(G \) then the edge \(x\rightarrow y \) is also in \(G \).

 - **Proof (sufficient):**
 - Assume the graph \(G \) has this property. We will show \(R \) is transitive.
 - Let \(x,y,z \) be such that \(xRy \) and \(yRz \) hold.
 - In the graph \(G \) we can reach from \(x \) to \(z \) via the path \(x\rightarrow y\rightarrow z \). So by assumption on \(G \), \(x\rightarrow z \) is also an edge in \(G \).
 - Hence \(xRz \) so \(R \) is transitive.

 - **Proof (necessary) by contradiction:**
 - Assume by contradiction \(R \) is transitive but \(G \) doesn’t have this property.
 - So, there are vertices \(x,y \) with a path \(x\rightarrow v_1\rightarrow \ldots \rightarrow v_k\rightarrow y \) in \(G \) but where the edge \(x\rightarrow y \) is NOT in \(G \).
 - Choose such a pair \(x,y \) with **minimal path length** \(k \).
 - We divide the proof to cases.

 - **Case 1:** \(k=0 \). So \(x\rightarrow y \) in \(G \). Contradiction.
 - **Case 2:** \(k=1 \). Since \(R \) is transitive then \(x\rightarrow v_1 \) and \(v_1\rightarrow y \) imply \(x\rightarrow y \).
 - **Contradiction.**
 - **Case 3:** \(k>1 \). Then \(x\rightarrow v_k \) must be in \(G \) since the path \(x\rightarrow v_1 \rightarrow \ldots \rightarrow v_k \) has length \(k-1 \) and we assumed the path from \(x \) to \(y \) is of minimal length. So in fact \(x\rightarrow v_k\rightarrow y \). Contradiction.

 QED
2. Equivalence relations

A Set Partition T of a set S is a subset of the power set $\mathcal{P}(S)$ such that each set in T is disjoint from any other set in T and the union of all sets in T is S.

$T \subset \mathcal{P}(S)$:
- If $A \in T$ and $B \in T$ with $A \neq B$ then $A \cap B = \emptyset$
- If $T = \{A_1, A_2, \ldots, A_k\}$ then $A_1 \cup A_2 \cup \ldots \cup A_k = S$

Example: $\{\{1, 5, 6\}, \{2, 3\}, \{4, 7, 8\}\}$ is a set partition of $\{1, 2, 3, 4, 5, 6, 7, 8\}$.

Equivalence relations
- Definition: a relation is an equivalence relation if it is
 - Reflexive: $\forall x. xRx$
 - Symmetric: $\forall x, y. xRy \leftrightarrow yRx$
 - Transitive: $\forall x, y, z. xRy \land yRz \rightarrow xRz$
- What does that actually mean??
Equivalence relations

- An equivalence relation partitions the universe to equivalence classes
- The set of equivalence classes form a set partition!
- E.g. all people who were born on 11/1/11 is one equivalence class
- Reflexive: a person has the same birthday as himself...
- Symmetric: if x,y have the same birthday then so do y,x
- Transitive: if x,y have the same birthday, and y,z have the same birthday, then so do x,z

Equivalence relations

- As a graph

Which of the following is an equivalence relation in the universe of integer numbers

- A. x divides y
- B. x*y>0
- C. x+y>0
- D. x+y is even
- E. None/more than one/other
Equivalence relations

- Which of the following is an equivalence relation in the universe of graphs

A. x, y have the same number of vertices
B. x, y have the same edges
C. x, y are both Eulerian
D. x, y are the same up to re-labeling the vertices (isomorphic)
E. None/more than one/other

Equivalence relations as functions

- We can see an equivalence relation as a function

 Universe → Property

 E.g. People → birthday
 Integers → sign
 Graphs → #vertices

- An equivalence class is the set of elements mapped to the same value

Modular arithmetics

- We will later see a very important example of an equivalence relation – modular arithmetics

- It has many applications in algorithms and cryptography