1. Functions

Definition of a function

- A function $f: X \rightarrow Y$ is a mapping that maps each element of X to an element of Y

- Each element of X is mapped to exactly one element of Y
 - Not two
 - Not none
 - Exactly one!
What is a function?

Is the following a function from X to Y?

A. Yes
B. No

What is a function?

Is the following a function from X to Y?

A. Yes
B. No

What is a function?

Is the following a function from X to Y?

A. Yes
B. No

What is a function?

Is the following a function from X to Y?
What is a function?

- Is the following a function from Y to X?
 - A. Yes
 - B. No

Properties of functions

Injective, surjective, bijective

Injective, Surjective, Bijective...

- Function \(f:X \to Y \)
- \(f \) is injective (1 to 1) if: \(f(x) = f(y) \Rightarrow x = y \)
 - That is, no two elements in \(X \) are mapped to the same value
- \(f \) is surjective (onto) if: \(\forall y \in Y \exists x \in X \) s.t. \(f(x) = y \)
 - There is always an "pre-image"
 - Could be more than one \(x \)!
- \(f \) is bijective if it is both injective and surjective
Injective, Surjective, Bijective...

Is the following function

A. Injective
B. Surjective
C. Bijective
D. None

Which of the following functions \(f: \mathbb{N} \rightarrow \mathbb{N} \) is not injective

A. \(f(x) = x \)
B. \(f(x) = x^2 \)
C. \(f(x) = x + 1 \)
D. \(f(x) = 2x \)
E. None/other/more than one
Injective, Surjective, Bijective...:

Which of the following functions $f: \mathbb{R} \rightarrow \mathbb{R}$ is not injective

<table>
<thead>
<tr>
<th>Option</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>$f(x) = x$</td>
</tr>
<tr>
<td>B.</td>
<td>$f(x) = x^2$</td>
</tr>
<tr>
<td>C.</td>
<td>$f(x) = x + 1$</td>
</tr>
<tr>
<td>D.</td>
<td>$f(x) = 2x$</td>
</tr>
<tr>
<td>E.</td>
<td>None/other/more than one</td>
</tr>
</tbody>
</table>

Which of the following functions $f: \mathbb{N} \rightarrow \mathbb{N}$ is not surjective

<table>
<thead>
<tr>
<th>Option</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>$f(x) = x$</td>
</tr>
<tr>
<td>B.</td>
<td>$f(x) = x^2$</td>
</tr>
<tr>
<td>C.</td>
<td>$f(x) = x + 1$</td>
</tr>
<tr>
<td>D.</td>
<td>$f(x) = 2x$</td>
</tr>
<tr>
<td>E.</td>
<td>None/other/more than one</td>
</tr>
</tbody>
</table>

Inverses

Injective, Surjective, Bijective...:

Which of the following functions $f: \mathbb{R} \rightarrow \mathbb{R}$ is not surjective

<table>
<thead>
<tr>
<th>Option</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>$f(x) = x$</td>
</tr>
<tr>
<td>B.</td>
<td>$f(x) = x^2$</td>
</tr>
<tr>
<td>C.</td>
<td>$f(x) = x + 1$</td>
</tr>
<tr>
<td>D.</td>
<td>$f(x) = 2x$</td>
</tr>
<tr>
<td>E.</td>
<td>None/other/more than one</td>
</tr>
</tbody>
</table>
Inverse functions

- Functions $f: X \to Y$ and $g: Y \to X$ are inverses if
 - $\forall x \in X, g(f(x)) = x$
 - $\forall y \in Y, f(g(y)) = y$
- In this case we write $g = f^{-1}$ (and also $f = g^{-1}$)

Inverse functions

- Does the following function have an inverse:
 - $f: \mathbb{R} \to \mathbb{R}, f(x) = 2x$
 - A. Yes
 - B. No

Inverse functions

- Does the following function have an inverse:
 - $f: \mathbb{Z} \to \mathbb{Z}, f(x) = 2x$
 - A. Yes
 - B. No

Inverse functions

- Does the following function have an inverse:
 - $f: \{1,2\} \to \{1,2,3,4\}, f(x) = 2x$
 - A. Yes
 - B. No
Functions with an inverse are surjective

Let $f:X \to Y$, $g:Y \to X$ be inverse functions

Theorem: f is surjective

Proof (by contradiction):
- Assume not. That is, there is $y \in Y$ such that for any $x \in X$, $f(x) \neq y$.
- Let $x' = g(y)$. Then, $x' \in X$ and $f(x') = y$.
- Contradiction. Hence, f is surjective. QED

Functions with an inverse are injective

Let $f:X \to Y$, $g:Y \to X$ be inverse functions

Theorem: f is injective

Proof (by contradiction):
- Assume not. That is, there are distinct $x_1, x_2 \in X$ such that $f(x_1) = f(x_2)$.
- Then $g(f(x_1)) = g(f(x_2))$.
- But since f, g are inverses, $g(f(x_1)) = x_1$ and $g(f(x_2)) = x_2$.
- So $x_1 = x_2$.
- Contradiction. Hence, f is injective. QED

Functions with an inverse are bijective

Let $f:X \to Y$, $g:Y \to X$ be inverse functions

We just showed that f must be both surjective and injective

Hence, **bijective**

It turns out that the opposite is also true – any bijective function has an inverse. We might prove it later.