1) Use K-maps to simplify the following functions.

 a. \(f(a,b,c) = \prod M(3,4,5) + \sum d (2,7) \)

 i. List all prime implicates,
 ii. List essential prime implicates
 iii. Derive all possible minimal POS (product of sum expressions)

 b. if \(f_1(a,b,c) = \sum m (0,1,5,6) \) and \(f_2(a,b,c) = \sum m (0,1,4) \), draw the k-maps for functions \(f_1, f_2, \) and \(f_1 \& f_2 \) and then derive the minimal SOP representation of function \(f_1 \& f_2 \) (\(f_1 \) and \(f_2 \)).

2) Given \(f(a, b, c, d) = \sum m(0, 3, 4, 5, 10, 14) + \sum d(1, 7) \):

 a. Derive a minimal expression for \(f \)
 b. implement the function using a minimal network of 2:1 multiplexers and minimum number of inverters. Do not use any other logic gates.

3) A museum has three rooms, each with a motion sensor (\(m_0, m_1 \) and \(m_2 \)) that outputs 1 when motion is detected. At night, the only person in the museum is one security guard who walks from room to room. Create a circuit that sounds an alarm (by setting an output A to 1) if motion is ever detected in more than one room at a time (ie in two or three rooms), meaning there must be one or more intruders in the museum

 a. Fill out the truth table
 b. Minimize the expression (use K-maps)
 c. Draw circuit for minimum implementation obtained in part b.

4) Use decoders specified below and a minimum number of other gates to output a 1 for any prime number less than 16.

 a. use minimum number of 3:8 decoders
 b. use minimum number of 2:4 decoders