Lecture 9: Bridging

CSE 123: Computer Networks
Alex C. Snoeren
Lecture 9 Overview

● Finishing up media access
 ◆ Ethernet
 ◆ Contention-free methods (rings)

● Moving beyond one wire
 ◆ Link technologies have limits on physical distance
 ◆ Also frequently on number of hosts connected

● Methods to interconnect LANs
 ◆ Repeaters and bridges
 ◆ Switching
Even with CSMA there can still be collisions. Why?

If nodes can detect collisions, abort! (CSMA/CD)
- Requires a minimum frame size (“acquiring the medium”)
- B must continue sending (“jam”) until A detects collision

Requires a full duplex channel
- Wireless is typically half duplex; need an alternative
Collision Detection (CD)

- How can A know that a collision has taken place?
 - Worst case:
 - Latency between nodes A & B is \(d\)
 - A sends a message at time \(t\) and B sends a message at \(t + d - \epsilon\) (just before receiving A's message)
 - B knows there is a collision, but not A… A must keep transmitting until it can tell if a collision occurred
 - How long? \(2 \times d\)

- IEEE 802.3 Ethernet specifies max value of \(2d\) to be 51.2us
 - This relates to maximum distance of 2500m between hosts
 - At 10Mbps it takes 0.1us to transmit one bit so 512 bits take 51.2us to send
 - So, Ethernet frames must be at least 64B (512 bits) long
 - Padding is used if data is too small

- Send jamming signal to insure all hosts see collision
 - 48 bit signal
Ethernet

- First local area network (LAN)
 - Developed in early ’70s by Metcalfe and Boggs at PARC
 - Originally 1Mbps, now supports 10Mbps, 100Mbps, 1Gbps
 10Gbps, 40Gbps, and 100Gbps flavors (400G in dev)

- Currently the dominant LAN technology
 - Becoming the dominant WAN technology
Classic Ethernet

- IEEE 802.3 standard wired LAN (modified 1-persistent CSMA/CD)
- Classic Ethernet: 10 Mbps over coaxial cable
 - All nodes share same wire
 - Max length 2.5km, max between stations 500m

Framing
- Preamble, 32-bit CRC, variable length data
- Unique 48-bit address per host (bcast & multicast addr too)

<table>
<thead>
<tr>
<th></th>
<th>Source (6)</th>
<th>Dest (6)</th>
<th>Len (2)</th>
<th>Payload (var)</th>
<th>Pad (var)</th>
<th>CRC (4)</th>
</tr>
</thead>
</table>

CSE 123 – Lecture 9: Bridging
Ethernet improvements

- Problems with random delay with fixed mean
 - Few senders = unnecessary delay
 - Many senders = unnecessary collisions

- Binary exponential back-off balances delay w/ load
 - First collision: wait 0 or 1 min frame times at random, retry
 - Second time: wait 0, 1, 2, or 3 times
 - Nth time \((n<10)\): wait 0, 1, \ldots, 2^n-1 times
 - Max wait 1023 frames; give up after 16 attempts
Capture Effect

- Randomized access scheme is not fair

- Suppose stations A and B always have data to send
 - They *will* collide at some time
 - Both pick random number of “slots” (0, 1) to wait
 - Suppose A wins and sends
 - Next time they collide, B’s chance of winning is halved
 » B will select from 0,1,2,3 due to exponential back-off

- A keeps winning: said to have captured the channel
Ethernet Performance

- Much better than Aloha or CSMA in practice

- Source of protocol inefficiency: still collisions
 - More efficient to send larger frames
 » Acquire the medium and send lots of data
 - Less efficient if
 » More hosts – more collisions needed to identify single sender
 » Smaller packet sizes – more frequent arbitration
 » Longer links – collisions take longer to observe, more wasted bandwidth
Contestation-free Protocols

- Problem with fixed partitioning:
 - Inefficient at low load (idle channels)

- Problem with contention-based protocols:
 - Inefficient at high load (collisions)

- Ideal(?): Contestation-free protocols
 - Try to do both by explicitly taking turns
 - Can potentially also offer guaranteed bandwidth, latency, etc.
Contestion-free Approaches

Polling

- Master node “invites” slave nodes to transmit in turn
 - Request to Send (RTS), Clear to Send (CTS) messages

- Problems:
 - Polling overhead
 - Latency
 - Single point of failure (master)

Token Passing

- Control token passed from one node to next sequentially.

- Problems:
 - Token overhead
 - Latency
 - Single point of failure (token)
Token Ring (802.5)

- Token rotates “permission to send” around nodes
- Sender injects packet into ring and removes later
 - Maximum token holding time (THT) bounds access time
 - Early or delayed token release
 - Round robin service, acknowledgments and priorities
- Monitor nodes ensure health of ring (alerts on failures)
FDDI
(Fiber Distributed Data Interface)

- Roughly a large, fast token ring
 - First real use of fiber optics in a LAN
 - 100 Mbps and 200km (FDDI) vs 4/16 Mbps and local (802.5)
 - Dual counter-rotating rings for redundancy
 - Complex token holding policies for voice etc. traffic

- Token ring advantages
 - No contention, bounded access delay
 - Support fair, reserved, priority access

- Disadvantages
 - Complexity, reliability, scalability

CSE 123 – Lecture 9: Bridging
Why Did Ethernet Win?

- Failure modes
 - Token rings – network unusable
 - Ethernet – node detached

- Good performance in common case

- Completely distributed, easy to maintain/administer

- Easy incremental deployment

- Volume → lower cost → higher volume ….
Summary of Media Access

- How to divide shared channel among different users
 - Fixed partitioning (FDMA, TDMA, CDMA)
 » Guaranteed bandwidth for each user, but wasteful when not used and can’t allocate different bandwidth to different users
 - Contention-based protocols (CSMA, CSMA/CD)
 » Try and backoff if fail; dynamic allocation of bandwidth on demand, works well at load load but collisions a problem at high load
 - Contention-free protocols (Token Ring, FDDI, RTS/CTS)
 » Explicit turn-taking; strong guarantees on access time and can make bandwidth guarantees, but complex and fragile to failure

- But… aren’t there limits to what we can do with one shared channel?
Problems with Busses

- One shared link (a bus) limits scale in terms of:
 - Distance (e.g., 2500 m for Ethernet)
 - Number of nodes (1024 nodes)
 - Performance (Capacity shared across all nodes)

- A better alternative is to have multiple busses
 - Each bus is of a limited size, scale, number of hosts, etc.

- Need the ability to connect multiple busses together
 - In other words move frames from one wire to another
Hubs/Repeaters

- Physical layer device
 - One “port” for each LAN
 - Repeat received *bits* on one port out *all* other ports
Hub Advantages

- Hubs can be arranged into hierarchies
 - Ethernet: up to four hubs between any pair of nodes

- Most of LAN continues to operate if “leaf” hub dies

- Simple, cheap
Still One Big Bus

- **Single collision domain**
 - No improvement in max throughput
 - Average throughput < as # of nodes increases
 - Why?

- **Still limited in distance and number of hosts**
 - Collision detection requirements
 - Synchronization requirements

- **Requires performance homogeneity**
 - Can’t connect 10 Mbps and 100 Mbps networks
Bridges

- **Store and forward** device
 - Data-link layer device
 - Buffers entire packet and *then* rebroadcasts it on other ports

- Creates *separate* collision domains
 - Uses CSMA/CD for access to each LAN (acts like a host)
 - Can accommodate different speed interfaces (issues?)
 - Separate CDs improves throughput (why?)

- Can significantly improve performance
 - Not all frames go everywhere. (Why did they with a hub?)
For Next Time

- Read 3.2-3.2.4 in P&D

- HW2 due next Wednesday