Overview

- Methods to share physical media: **multiple access**
 - Fixed partitioning
 - Random access

- Channelizing mechanisms

- Contention-based mechanisms
 - Aloha
 - Ethernet
Fixed Partitioning

- Need to share media with multiple nodes \((n)\)
 - Multiple *simultaneous* conversations

- A simple solution
 - Divide the channel into multiple, separate channels

- Channels are physically separate
 - Bitrate of the link is split across channels
 - Nodes can only send/receive on their assigned channel

- Several different ways to do it
 - _____ Multiple Access madlibs…
Frequency Division (FDMA)

- Divide bandwidth of f Hz into n channels each with bandwidth f/n Hz
 - Easy to implement, but unused subchannels go idle
 - Used by traditional analog cell phone service, radio, TV

CSE 123 – Lecture 8: Media Access Control
Time Division (TDMA)

- Divide channel into rounds of \(n \) time slots each
 - Assign different hosts to different time slots within a round
 - Unused time slots are idle
 - Used in GSM cell phones & digital cordless phones

- Example with 1-second rounds
 - \(n=4 \) timeslots (250ms each) per round

CSE 123 – Lecture 8: Media Access Control
Code Division (CDMA)

- Do nothing to physically separate the channels
 - All stations transmit at same time in same frequency bands
 - One of so-called spread-spectrum techniques

- Sender modulates their signal on top of unique code
 - Sort of like the way Manchester modulates on top of clock
 - The bit rate of resulting signal much lower than entire channel

- Receiver applies code filter to extract desired sender
 - All other senders seem like noise with respect to signal

- Used in newer digital cellular technologies

CSE 123 – Lecture 8: Media Access Control
Partitioning Visualization

FDMA

TDMA

CDMA

Courtesy Takashi Inoue

CSE 123 – Lecture 8: Media Access Control
Problem w/Channel partitioning

- Not terribly well suited for random access usage
 - Why?

- Instead, design schemes for more common situations
 - Not all nodes want to send all the time
 - Don’t have a fixed number of nodes

- Potentially higher throughput for transmissions
 - Active nodes get full channel bandwidth
Aloha

- Designed in 1970 to support wireless data connectivity
 - Between Hawaiian Islands—rough!

- Goal: distributed access control (no central arbitrator)
 - Over a shared broadcast channel

- Aloha protocol in a nutshell:
 - When you have data send it
 - If data doesn’t get through (receiver sends acknowledgement) then retransmit after a random delay
 - Why not a fixed delay?
Collisions

- Frame sent at t_0 collides with frames sent in $[t_0-1, t_0+1]$
 - Assuming unit-length frames
 - Ignores propagation delay
Slotted Aloha

- Time is divided into equal size slots (frame size)
- Host wanting to transmit starts at start of next slot
 - Retransmit like w/Aloha, but quantize to nearest next slot
- Requires **time synchronization** between hosts

Success (S), Collision (C), Empty (E) slots
Q: What is max fraction slots successful?
A: Suppose n stations have packets to send
 - Each transmits in slot with probability p
 - Prob[successful transmission], S, is:

$$S = p \cdot (1-p)^{(n-1)}$$

- any of n nodes:

$$S = \text{Prob[one transmits]} = np(1-p)^{(n-1)}$$

(optimal p as $n \to \infty$ = $1/n$)

$$= 1/e = .37$$

At best: channel used for useful transmissions 37% of time!
Carrier Sense (CSMA)

- Aloha transmits even if another host is transmitting
 - Thus guaranteeing a *collision*

- Instead, listen *first* to make sure channel is idle
 - Useful only if channel is frequently idle
 - Why?

- How long to be confident channel is idle?
 - Depends on maximum propagation delay
 - Small (<<1 frame length) for LANs
 - Large (>>1 frame length) for satellites
non-persistent CSMA

- Give up, or send after some random delay
- Problem: may incur larger delay when channel is idle

1-persistent CSMA

- Send as soon as channel is idle
- Problem: blocked senders all try to send at once

P-persistent CSMA

- If idle, send packet with probability p; repeat
- Make sure $(p \times n) < 1$
For Next Time

- Read 3-3.2 in P&D
- Get started on HW2
- Keep going on the project…