Lecture 3: Modulation & Clock Recovery

CSE 123: Computer Networks
Alex C. Snoeren
Lecture 3 Overview

- Signaling constraints
 - Shannon’s Law
 - Nyquist Limit

- Encoding schemes
 - Clock recovery
 - Manchester, NRZ, NRZI, etc.
Ways to measure a channel

- How fast?
 - Bandwidth measured in bits per second
 - Yes, this is an abuse of terminology—sorry.
 - Often talk about KBps or Mbps – Bytes vs bits

- How long was the wait?
 - Delay (one-way or round trip) measured in seconds

- How efficiently?
 - Overhead measured in bits or seconds or cycles or...

- Any mistakes?
 - Error rate measured in terms of probability of flipped bit
Ok, recall from last class…

- No channel is perfect and the original signal gets modified along the way
 - Attenuation: signal power absorbed by medium
 - Distortion: frequency, phase changes
 - Noise: random background “signals”

- Different mediums distort different signals differently
- Note: that here “bandwidth” means frequency over which signals cannot pass through channel
Sampling

- To reconstruct a signal, we need to sample it.
Intersymbol Interference

● Bandlimited channels cannot respond faster than some maximum frequency f
 - Channel takes some time to settle

● Attempting to signal too fast will mix symbols
 - Previous symbol still “settling in”
 - Mix (add/subtract) adjacent symbols
 - Leads to intersymbol interference (ISI)

● OK, so just how fast can we send symbols?
In a channel bandlimited to f, we can send at maximum symbol (baud) rate of $2f$ without ISI.
Multiple Bits per Symbol

- Nyquist limits the number of symbols per second we can send, but doesn’t talk about the information content in each symbol

- Couldn’t we send *multiple* bits per symbol
 - E.g., multiple voltage levels instead of just high/low
 - Four levels gets you two bits, $log_2 M$ in general (M levels)

- Can combine this observation with Nyquist
 - *Channel capacity: $C < 2B \log_2(M)$*

- Why not infinite levels? Infinite bandwidth no?
Noise matters

- Real channels are noisy… noise creates measurement challenges

- Example:
 - Encode 4 values using voltage
 » 2 bits per symbol
 » Symbols at 3V, 2V, 1V and 0V
 - What if noise is 0.5V?
 » If you get line level of 2.5V then what symbol is it? 11 or 10?

- Limited to ~ $\log_2 (S/2N)$ bits per symbol
 (S = signal power, N = Noise)
 - Previous example: $S = 3V-0V=3V$, $N=0.5V$, so we can have $\log_2(3/1) = 1.58$ bits per symbol
Shannon’s Law

- Shannon considered noisy channels and derived

\[C = B \log (1 + \frac{S}{N}) \]

- Gives us an upper bound on any channel’s performance regardless of signaling scheme

- Old school modems approached this limit
 - B = 3000Hz, S/N = 30dB = 1000
 - \[C = 3000 \times \log(1001) \approx 30\text{kbps} \]
 - 28.8Kbps – anyone remember dialup?
How long to send a message?

- Transmit time $T = \frac{M}{R} + D$
 - 10 Mbps Ethernet LAN (M=1KB)
 - $M/R \approx 1$ ms, $D \approx 5$ us
 - 155 Mbps cross country ATM link (M=1KB)
 - $M/R \approx 50$ us, $D = 40-100$ ms

- Where are the bits in the mean time?
 - In transit inside the network ("in the pipe")

- R*D is called the **bandwidth-delay product**
 - How many bits can be “stored” be stored in transit
 - Colloquially, we say “fill the pipe”
Next problem: Clock recovery

- How does the receiver know when to sample the signal?
 - Sampling rate: How often to sample?
 - Sampling phase:
 - When to start sampling? (getting in phase)
 - How to adjust sampling times (staying in phase)
Why the sampling rate matters:

- Signal could have multiple interpretations

Which of these is correct?

CSE 123 – Lecture 3: Modulation
Nyquist Revisited

- Sampling at the correct rate ($2f$) yields actual signal
 - Always assume lowest-frequency wave that fits samples

- Sampling too slowly yields aliases
The Importance of Phase

- Need to determine when to START sampling, too

![Diagram showing the importance of phase]

INPUT

1 1 0 1

OUTPUT

Ideal Sampling Points at receiver
Clock Recovery

- Using a training sequence to get receiver lined up
 - Send a few, known initial training bits
 - Adds inefficiency: only m data bits out of n transmitted

- Need to combat clock drift as signal proceeds
 - Use transitions to keep clocks synched up

- Question is, how often do we do this?
 - Quick and dirty every time: asynchronous coding
 - Spend a lot of effort to get it right, but amortize over lots of data: synchronous coding
Asynchronous Coding

- Encode several bits (e.g. 7) together with a leading “start bit” and trailing “stop bit”
- Data can be sent at any time

- Start bit transition kicks off sampling intervals
 - Can only run for a short while before drifting
Example: RS232 serial lines

- Uses two voltage levels (+15V, -15V), to encode single bit binary symbols
- Needs long idle time – limited transmit rate
Synchronous coding

- Encode many bits (thousands) together
 - Amortize cost of learning clock information from start bits (preamble) and stop bits (trailer)
 - Continuously “learn” clock from data stream
 » Watch for 0-1 or 1-0 transitions, and adjust clock
 » Called clock recovery process

- Examples
 - NRZ
 - NRZI
 - Manchester
 - 4B/5B
 - Many others…
Synchronous Coding

- Asynchronous receiver phase locks each symbol
 - Takes time, limiting transmission rates

- So, start symbols need to be extra slow
 - Need to fire up the clock, which takes time

- Instead, let’s do this training once, then just keep sync
 - Need to continually adjust clock as signal arrives
 - Ever hear of Phase Lock Loops (PLLs)?

- Basic idea is to use transitions to lock in
Non-Return to Zero (NRZ)

- Signal to Data
 - High ⇒ 1
 - Low ⇒ 0

- Comments
 - Transitions maintain clock synchronization
 - Long strings of 0s confused with no signal
 - Long strings of 1s causes baseline wander
 » We use average signal level to infer high vs low
 - Both inhibit clock recovery

![NRZ Signal Diagram](image)
Non-Return to Zero Inverted (NRZI)

- Signal to Data
 - Transition \(\Rightarrow 1\)
 - Maintain \(\Rightarrow 0\)

- Comments
 - Solves series of 1s, but not 0s

![NRZI diagram](image)
For Next Class

- Read 2.3
- Layering next