Lecture 16: Router Design

CSE 123: Computer Networks
Alex C. Snoeren

Example courtesy Mike Freedman
End-to-end lookup and forwarding example

Router internals
- Buffering
- Scheduling
Example: Sending to CNN

CSE 123 – Lecture 16: Router Design
Basic Steps

1. Host A must learn the IP address of B via DNS
2. Host A uses gateway R to reach external hosts
3. Router R forwards IP packet to outgoing interface
4. Router R learns B’s MAC address and forwards frame
Host A Learns B’s IP Address

Host A does a DNS query to learn B’s address
- Suppose gethostbyname() returns 222.222.222.222

Host A constructs an IP packet to send to B
- Source 111.111.111.111, dest 222.222.222.222
Host A Learns B’s IP Address

IP packet
- From A: 111.111.111.111
- To B: **222.222.222.222**

Ethernet frame
- From A: 74-29-9C-E8-FF-55
- To gateway: ????
Host A has a gateway router R

- Used to reach dests outside of 111.111.111.0/24
- Address 111.111.111.110 for R learned via DHCP

But, what is the MAC address of the gateway?
A Sends Packet Through R

Host A learns the MAC address of R’s interface
- ARP request: broadcast request for 111.111.111.110
- ARP response: R responds with E6-E9-00-17-BB-4B

Host A encapsulates the packet and sends to R
A Sends Packet Through R

IP packet
- From A: 111.111.111.111
- To B: 222.222.222.222

Ethernet frame
- From A: 74-29-9C-E8-FF-55
- To R: E6-E9-00-17-BB-4B
Router R’s adapter receives the packet

- R extracts the IP packet destined to 222.222.222.222

Router R consults its forwarding table

- Packet matches 222.222.222.0/24 via other interface
R Wants to Forward Packet

IP packet
- From A: 111.111.111.111
- To B: 222.222.222.222

Ethernet frame
- From R: 1A-23-F9-CD-06-9B
- To B: ???
Router R’s learns the MAC address of host B

- ARP request: broadcast request for 222.222.222.222
- ARP response: B responds with 49-BD-D2-C7-56-2A

Router R encapsulates the packet and sends to B
R Wants to Forward Packet

IP packet
- From A: 111.111.111.111
- To B: 222.222.222.222

Ethernet frame
- From R: 1A-23-F9-CD-06-9B
- To B: 49-BD-D2-C7-56-2A

CSE 123 – Lecture 16: Router Design
What’s in a Router?

Physical components
- One or more **input interfaces** that receive packets
- One or more **output interfaces** that transmit packets
- A chassis (box + power) to hold it all

Functions
- **Forward** packets
- **Drop** packets (congestion, security, QoS)
- **Delay** packets (QoS)
- **Transform** packets? (Encapsulation, Tunneling)
Router Functions

1. Receive incoming packet from link input interface
2. Lookup packet destination in forwarding table
 (destination, output port(s))
3. Validate checksum, decrement ttl, update checksum
4. Buffer packet in input queue
5. Send packet to output interface (interfaces?)
6. Buffer packet in output queue
7. Send packet to output interface link
Functional architecture

Control Plane
- Complex
- Per-control action
- May be slow

Data plane
- Simple
- Per-packet
- Must be fast
Interconnect architecture

Input & output connected via switch fabric

Kinds of switch fabric
- Shared Memory
- Bus
- Crossbar

How to deal with transient contention?
- Input queuing
- Output queuing
First Generation Routers

- Single CPU and shared memory;
- All classification by main CPU.

CSE 123 – Lecture 16: Router Design
Second Generation Routers

- CPU
- Route Table
- Shared Bus(es)
- Direct DMA on cache hit

- Line Card
 - Buffers
 - Forwarding Cache
 - MAC

- Cache of recent routes

CSE 123 – Lecture 16: Router Design
Third Generation Routers

- Switch Fabric
 - Shared interconnect (frequently crossbar)
 - Centralized scheduler
 - Full forwarding table in line card
 - Fixed cells

- Line Card
 - Buffers
 - Forwarding Table
 - MAC

- CPU Card
 - CPU
 - Routing Table

- Line Card
 - Buffers
 - Forwarding Table
 - MAC

CSE 123 – Lecture 16: Router Design
Output queuing

Output interfaces buffer packets

Pro
- Simple algorithms
- Single congestion point

Con
- N inputs may send to the same output
- Requires speedup of N
 » Output ports must be N times faster than input ports
Input queuing

Input interfaces buffer packets

Pro
- Single congestion point
- Simple to design algorithms

Con
- Must implement flow control
- Low utilization due to Head-of-Line (HoL) Blocking

CSE 123 – Lecture 16: Router Design
Head-of-Line Blocking

CSE 123 – Lecture 16: Router Design
IQ + Virtual Output Queuing

Input interfaces buffer packets in per-output virtual queues

Pro
- Solves blocking problem

Con
- More resources per port
- Complex arbiter at switch
- Still limited by input/output contention (scheduler)
Virtual Output Queues
Switch scheduling

Problem

- Match inputs and outputs
- Resolve contentions, no packet drops
- Maximize throughput
- Do it in constant time…

If traffic is uniformly distributed its easy

- Lots of algorithms (approximate matching)

Seminal result (Dai et al, 2000)

- Maximal size matching + speedup of two guarantees
 100% utilization for most traffic assumptions
Typical high-performance router

IQ + VoQ + OQ
- Speedup of 2
- Central scheduler
- Fixed-sized internal cells

Pro
- Can achieve utilization of 1
- Can scale to > Tb/s

Con
- Multiple congestion points
- Complexity
For Next Time

Read P&D 4.1—4.1.2

Make sure we have your github ID