Processes

- Recall that a process includes many things
 - An address space (defining all the code and data pages)
 - OS resources (e.g., open files) and accounting information
 - Execution state (PC, SP, regs, etc.)

- Creating a new process is costly because of all of the data structures that must be allocated and initialized
 - Recall struct proc in Solaris

- Communicating between processes is costly because most communication goes through the OS
 - Overhead of system calls and copying data
Parallel Programs

- To execute these programs we need to
 - Create several processes that execute in parallel
 - Have the OS schedule these processes in parallel (logically or physically)

- This situation is very inefficient
 - Space: PCB, page tables, etc.
 - Time: create data structures, fork and copy addr space, etc.

- Solution: possible to have cooperating “processes”?
Rethinking Processes

- What is similar in these cooperating “processes”?
 - They all share the same code and data (address space)
 - They all share the same privileges
 - They all share the same resources (files, sockets, etc.)

- What don’t they share?
 - Each has its own execution state: PC, SP, and registers

- Key idea: Why don’t we separate the concept of a process from its execution state?
 - Process: address space, privileges, resources, etc.
 - Execution state: PC, SP, registers

- Exec state also called thread of control, or thread
Threads

- **Thread vs Process**
 - A **thread** defines a sequential execution stream within a process (PC, SP, registers)
 - A **process** defines the address space and general process attributes (everything but threads of execution)

- **A thread is bound to a single process**
 - A process, however, can have multiple threads

- **Threads become the unit of scheduling**
 - Processes are now the **containers** in which threads execute
Threads: Lightweight Processes
A sequential execution stream within a process

(a) Three processes each with one thread
(b) One process with three threads
Analogy

- **Process:** 3 projects for different classes (CSE120, CSE140, CSE110)
 - Each one has different text book, different web pages, different TAs/Instructors

- **Threads:** 3 activities in CSE120 (Homework, Lectures, Projects)
 - Share the same concepts
 - Share TA/Tutors
 - All of them are going on in parallel
 - Each has their own things, too
The Thread Model

- Shared information
 - Processor info: parent process, time, etc
 - Memory: segments, page table, and stats, etc
 - I/O and file: communication ports, directories and file descriptors, etc

- Private state
 - State (ready, running and blocked)
 - Registers
 - Program counter
 - Execution stack
 - Why?

- Each thread execute separately
Threads in a Process

Stack (T1)

Stack (T2)

Stack (T3)

Heap

Static Data

Code

PC (T2)

PC (T3)

PC (T1)

Thread 1

Thread 2

Thread 3
Threads: Concurrent Servers

- Using `fork()` to create new processes to handle requests in parallel is overkill for such a simple task.
- Recall our forking Web server:

```c
while (1) {
    int sock = accept();
    if ((child_pid = fork()) == 0) {
        Handle client request
        Close socket and exit
    } else {
        Close socket
    }
}
```
Threads: Concurrent Servers

- Instead, we can create a new thread for each request

```c
web_server() {
    while (1) {
        int sock = accept();
        thread_fork(handle_request, sock);
    }
}
```

```c
handle_request(int sock) {
    Process request
    close(sock);
}
```

Difference from fork()?
Thread Usage: Web Server

Web server process

Dispatcher thread

Worker thread

Web page cache

Kernel

User space

Kernel space

Network connection
A thread can wait for I/O, while the other threads can still running.

What if it is single-threaded?
Windows Thread Lists from Performance Monitor
Windows Performance Analyzer

CPU Usage by Thread [Thread Priority >= 0]

% Usage

0

100

50

0 10 20 30

Time

Threads

sidebar.exe (2688) -

sidebar.exe (2688) : 2344
sidebar.exe (2688) : 2684
sidebar.exe (2688) : 2956
sidebar.exe (2688) : 3172
sidebar.exe (2688) : 4228
sidebar.exe (2688) : 4248
sidebar.exe (2688) : 4288
sidebar.exe (2688) : 4292
sidebar.exe (2688) : 5028
sidebar.exe (2688) : 5032
Thread Information on Linux

- Process information:
 - Read `/proc/[your PID]/stat` file

- Thread information (2.6 kernel):
 - Read `/proc/[your PID]/task/[thread ID]/stat`
Kernel-supported Threads

- We have taken the execution aspect of a process and separated it out into threads
 - To make concurrency cheaper
- As such, the OS now manages threads and processes
 - All thread operations are implemented in the kernel
 - The OS schedules all of the threads in the system
- OS-managed threads are called kernel-level threads or lightweight processes
 - NT: threads
 - Solaris: lightweight processes (LWP)
 - POSIX Threads (pthreads): PTHREAD_SCOPE_SYSTEM
Kernel-Supported Thread Limitations

- Kernel-level threads make concurrency much cheaper than processes
 - Much less state to allocate and initialize

- However, for fine-grained concurrency, kernel-level threads still suffer from too much overhead
 - Thread operations still require system calls
 - Ideally, want thread operations to be as fast as a procedure call
 - Kernel-level threads have to be general to support the needs of all programmers, languages, runtimes, etc.

- For more fine-grained concurrency, need even “cheaper” threads
To make threads cheap and fast, they need to be implemented at user level
- **Kernel-level supported threads** are managed by the OS
- **User-level supported threads** are managed entirely by the run-time system (user-level library)

User-level-supported threads are small and fast
- A thread is simply represented by a PC, registers, stack, and small **thread control block** (TCB)
- Creating a new thread, switching between threads, and synchronizing threads are done via **procedure call**
 - No kernel involvement
- User-level thread operations **100x faster** than kernel threads
- pthreads: `PTHREAD_SCOPE_PROCESS`
User level threads

Kernel level Supported threads

User level supported threads

Kernel
Small and Fast...

- Nachos thread control block

```java
class Thread {
    int *stack;
    int *stackTop;
    int machineState[MachineStateSize];
    ThreadStatus status;
    char *name;
    <Methods>
};
```
User Level Supported Thread Limitations

- But, user-level threads are not a perfect solution
 - As with everything else, they are a tradeoff
- User-level threads are invisible to the OS
 - They are not well integrated with the OS
- As a result, the OS can make poor decisions
 - Scheduling a process with idle threads
 - Blocking a process whose thread initiated an I/O, even though the process has other threads that can execute
 - Unscheduling a process with a thread holding a lock
- Solving this requires communication between the kernel and the user-level thread manager
Kernel vs. User-level Supported Threads

- **Kernel-level supported threads**
 - Integrated with OS (informed scheduling)
 - Slow to create, manipulate, synchronize

- **User-level supported threads**
 - Fast to create, manipulate, synchronize
 - Not integrated with OS (uninformed scheduling)

- Understanding the differences between kernel and user-level supported threads is important
 - For programming (correctness, performance)
 - For getting a ‘A’ in this class 😊
Kernel and User Threads

- Or use both kernel and user-level threads
 - Can associate a user-level thread with a kernel-level thread
 - Or, multiplex user-level threads on top of kernel-level threads

- Java Virtual Machine (JVM) (also pthreads)
 - Java threads are user-level threads
 - On older Unix, only one “kernel thread” per process
 - Multiplex all Java threads on this one kernel thread
 - On NT, modern Unix
 - Can multiplex Java threads on multiple kernel threads
 - Can have more Java threads than kernel threads
Implementing Threads

- Implementing threads has a number of issues
 - Interface
 - Context switch
 - Preemptive vs. non-preemptive
 - Scheduling
 - Synchronization (next lecture)

- Focus on user-level threads
 - Kernel-level threads are similar to original process management and implementation in the OS
 - What you will be dealing with in Nachos
 - Not only will you be using threads in Nachos, you will be implementing more thread functionality
Sample Thread Interface

- **thread_fork(procedure_t)**
 - Create a new thread of control
 - Also thread_create(), thread_setstate()
- **thread_stop()**
 - Stop the calling thread; also thread_block
- **thread_start(thread_t)**
 - Start the given thread
- **thread_yield()**
 - Voluntarily give up the processor
- **thread_exit()**
 - Terminate the calling thread; also thread_destroy
Thread Scheduling

- The thread scheduler determines when a thread runs
- It uses queues to keep track of what threads are doing
 - Just like the OS and processes
 - But it is implemented at user-level in a library
- Run queue: Threads currently running (usually one)
- Ready queue: Threads ready to run
- Are there wait queues?
 - How would you implement thread_sleep(time)?
Non-Preemptive Scheduling

- Threads voluntarily give up the CPU with `thread_yield`

Ping Thread

```c
while (1) {
    printf("ping\n");
    thread_yield();
}
```

Pong Thread

```c
while (1) {
    printf("pong\n");
    thread_yield();
}
```

- What is the output of running these two threads?
thread_yield()

- Wait a second. How does thread_yield() work?
- The semantics of thread_yield are that it gives up the CPU to another thread
 - In other words, it context switches to another thread
- So what does it mean for thread_yield to return?
 - It means that another thread called thread_yield!
- Execution trace of ping/pong
 - printf("ping\n");
 - thread_yield();
 - printf("pong\n");
 - thread_yield();
 - ...

Implementing thread_yield()

```c
thread_yield() {
    thread_t old_thread = current_thread;
    current_thread = get_next_thread();
    append_to_queue(ready_queue, old_thread);
    context_switch(old_thread, current_thread);
    return;
}
```

- The magic step is invoking `context_switch()`
- Why do we need to call `append_to_queue()`?
The context switch routine does all of the magic
- Saves context of the currently running thread (old_thread)
 - Push all machine state onto its stack (*not* its TCB)
- Restores context of the next thread
 - Pop all machine state from the next thread’s stack
- The next thread becomes the current thread
- Return to the NEW thread

This is all done in assembly language
- It works at the level of the procedure calling convention, so it cannot be implemented using procedure calls
- See code/threads/switch.s in Nachos
Preemptive Scheduling

- Non-preemptive threads have to voluntarily give up CPU
 - A long-running thread will take over the machine
 - Only voluntary calls to thread_yield(), thread_stop(), or thread_exit() causes a context switch

- Preemptive scheduling causes an involuntary context switch
 - Need to regain control of processor asynchronously
 - How?
 - Use timer interrupt
 - Timer interrupt handler forces current thread to “call” thread_yield
 - How do you do this?
Blocking Vs. non-blocking System Calls

- **Blocking system call**
 - Usually I/O related: read(), fread(), getc(), write()
 - Doesn’t return until the call completes
 - The process/thread is switched to blocked state
 - When the I/O completes, the process/thread becomes ready
 - Simple
 - **Real life example: attending a lecture**

- **Using non-blocking system call for I/O**
 - Asynchronous I/O
 - Complicated
 - The call returns once the I/O is initiated, and the caller continue
 - Once the I/O completes, an interrupt is delivered to the caller
 - **Real life example: apply for job**
The operating system as a large multithreaded program
 - Each process executes as a thread within the OS

Multithreading is also very useful for applications
 - Efficient multithreading requires fast primitives
 - Processes are too heavyweight

Solution is to separate threads from processes
 - Kernel-level threads much better, but still significant overhead
 - User-level threads even better, but not well integrated with OS

Now, how do we get our threads to correctly cooperate with each other?
 - Synchronization…