CSE 100:
FINAL REVIEW
Final Exam

• Location
 • YORK 2622

• Time
 • Thursday, December 10, 2015, 3:00pm – 6:00pm
Final Exam…

• 4 Parts
• Part 1: Basic knowledge of data structures and C++
 • 20% to 40% of final score
 • Multiple choice
• Part 2: Application, Comparison and Implementation of the data structures we have covered
 • 20% to 40% of final score
 • Short answers
• Part 3: Simulating algorithms and run time analysis
 • 20% to 40% of final score
 • Short answers
• Part 4: C++ and programming assignments
Topics

A. B trees
B. Red-Black trees
C. Multiway tries and ternary tries
D. Hashing
E. Skip lists
Properties of an m-order B trees

1. The root has at least 2 sub-trees, unless it is a leaf.
2. All leaves are at the same level.
3. Each node (leaf as well as non leaf) holds k-1 keys where \(\text{ceil}(m/2) \leq k \leq m \).
4. Each non-leaf node additionally holds k pointers to subtrees where \(\text{ceil}(m/2) \leq k \leq m \).
(b) Which of the following are legal 2,3 trees (B tree of order 3)? For a tree that is not a valid 2,3 tree, state a reason why.

A.

```
     22     50
    /      /       \
  8       30       64
```

B.

```
     22     52
    /      /       \
  5       9       24
```

C.

```
   22
  /|
5 9 17
```

D.

```
     12     50     79
    /      /       \
  4      7      30
```

E.
Insert the value 42 into the following BTree.
B+-tree with parameter M, L

- There are several variants of the basic B tree idea
 - B+ trees is one of them
- In a B+ tree, data records are stored only in the leaves
 - A leaf always holds between $\lceil L/2 \rceil$ and L data records (inclusive)
 - All the leaves are at the same level
- Internal nodes store key values which guide searching in the tree
 - An internal node always has between $\lceil M/2 \rceil$ and M children (inclusive)
 - (except the root, which, if it is not a leaf, can have between 2 and M children)
 - An internal node holds one fewer keys than it has children:
 - the leftmost child has no key stored for it
 - every other child has a key stored which is equal to the smallest key in the subtree rooted at that child
A B+-tree with $M=4$, $L=3$

- Every internal node must have 2, 3, or 4 children.
- Every leaf is at the same level (level 2 in the tree shown), and every leaf must have 2 or 3 data records (keys only shown).

\[\left\lfloor \frac{M}{2} \right\rfloor = 2 \leq k \leq M = 4 \]

\[k = \frac{M}{2} = k-1 \]

\[\left\lfloor \frac{L}{2} \right\rfloor = 2 \]
1. Nodes are either red or black
2. Root is always black
3. If a node is red, all it’s children must be black
4. For every node X, every path from X to a null reference must contain the same number of black nodes
How can we make the above tree a valid red-black tree

Insert 50. Then insert 66. Draw the resulting red-black tree.
Red-black tree bounds on height

Red-black tree with N black nodes.

1. Merge all red-nodes.
2. All leaves are at the same level.

No of nodes at level 0 = 1
No of nodes at level 1 ≥ 2
No of nodes at level i $\geq 2^i$
Total no of nodes = N_{black} $\geq 1 + 2 + \ldots + 2^i + \ldots + 2^{h-1}$
$\geq 2^h - 1$
$h \leq \log_2(N_{\text{black}} + 1)$

Height of original RBT $\leq 2 \times h \leq 2 \times \log_2(N_{\text{black}} + 1)$
Red-black tree bounds on height

Red-black tree with N black nodes.

1. Merge all red-nodes.
2. All leaves are at the same level.

No of nodes at level 0 = 1
No of nodes at level 1 ≤ 4
No of nodes at level i $\leq 4^i$

Total no of nodes $= N_{\text{black}} \leq 1 + 4 + \ldots + 4^i + \ldots + 4^{h-1} \\ \leq \frac{4^h - 1}{3}$

$h \geq \log_4(3N_{\text{black}} + 1)$

Height of original RBT $\geq h \geq \log_4(3N_{\text{black}} + 1)$
Red-black tree bounds on height

Red-black tree with total \(N \) nodes.

1. Height is lowest when the tree is a complete binary tree.

\[
\text{No of nodes at level 0} = 1 \\
\text{No of nodes at level 1} \leq 2 \\
\text{No of nodes at level } i \leq 2^i \\
\text{Total no of nodes} = N \leq 1 + 2 + \ldots + 2^i + \ldots + 2^{h-1} \\
\leq (2^h - 1) \\
\Rightarrow h \geq \log_2(N + 1)
\]

Height of original RBT \(h \geq \log_2(N + 1) \)
Multi-way tries: Efficient finding of keys by their sequence

Build the trie which holds the following number keys:

8 1234 59 123 8775 80

Assuming your trie could potentially hold any decimal number, how many children does each node (potentially) have?
A. 2 B. 8 C. 10 D. Other

C. 10
List all the words (strings) you can find in this TST

Are the following in the tree? (A=yes, B=no)
- get
- if
- gif
- its
- gacar
- tsem
Open addressing vs. separate chaining

- Linear probing and random hashing are appropriate if the keys are kept as entries in the hashtable itself...
 - doing that is called "open addressing"
 - it is also called "closed hashing"

- Another idea: Entries in the hashtable are just pointers to the head of a linked list ("chain"); elements of the linked list contain the keys...
 - this is called "separate chaining"
 - it is also called "open hashing"

- Collision resolution becomes easy with separate chaining: just insert a key in its linked list if it is not already there
 - (It is possible to use fancier data structures than linked lists for this; but linked lists work very well in the average case)
Write the sequence of vertices visited when running **DFS** on the following graph. Assume the link to the vertex with the minimum edge weight is chosen when multiple choices are available.

\[\text{A, C, D, B, E}\]

Write the sequence of vertices visited when running **BFS** on the following graph. Assume the link to the vertex with the minimum edge weight is chosen when multiple choices are available.

\[\text{A, C, B, E, D}\]
Which of the following is/are balanced trees?

And thus can become AVL trees by adding the balance factors

A. A
B. B
C. C
D. A&C
E. A&B&C

Annotate the trees with balance factors
AVL Rotations

Insert 50. Then insert 66. Draw the resulting AVL tree.
Data structure Comparison

<table>
<thead>
<tr>
<th></th>
<th>Insert</th>
<th></th>
<th>Find</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Avg</td>
<td>Worst</td>
<td>Avg</td>
<td>Worst</td>
</tr>
<tr>
<td>Sorted array</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>Sorted Linked list</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Queue</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Skip list</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>BST</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>AVL/RBT</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>Min-heap</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Hash table</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>B-trees</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
<td></td>
<td>$O(\log n)$</td>
</tr>
</tbody>
</table>
Data structure Comparison

Which of the following pairs of data structures, which of the pair is the better choice for.

• Inserting a list of \textit{sorted} elements (worst case):
 \begin{itemize}
 \item [A.] AVL tree
 \item [B.] Binary search tree
 \item [C.] They are about equal
 \end{itemize}

• Ease of implementation (assume it’s not built in):
 \begin{itemize}
 \item [A.] Skip list
 \item [B.] Red-Black tree (RBT)
 \item [C.] about equal
 \end{itemize}

• In-order traversal of elements:
 \begin{itemize}
 \item [A.] Hashtable
 \item [B.] Binary search tree
 \item [C.] They are about equal
 \end{itemize}
Data structure Comparison

Which of the following pairs of data structures, which of the pair is the better choice for.

• Smallest average-case (Big-O) time to find an element:
 A. Hashtable
 B. AVL tree
 C. They are about equal

• Fastest actual time to find an element from secondary storage (NOT big-O)
 A. RBT
 B. AVL tree
 C. B-trees
 D. They are all about equal

• Requires less space:
 A. Multi-way trie
 B. Ternary tree
 C. They are about equal
Good luck with the final!