CSE 100: B+ TREE, 2-3 TREE, NP-COMPLETENESS
Analyzing find in B-trees

- Since the B-tree is perfectly height-balanced, the worst case time cost for find is $O(\log N)$
- Best case: If every internal node is completely filled
 - $N \leq m^{H-1}$
 - $H \geq \log_m(N+1)$
 - $H = 1$ for root node
- Worst case ($d = \ceil(m/2)$)
 - $N \geq 2 \cdot d^{(H-1)} - 1$
 - $H \leq \log_d((N+1)/2)$
B+-tree with parameter M, L

- There are several variants of the basic B tree idea
 - B+ trees is one of them
- In a B+ tree, data records are stored only in the leaves
 - A leaf always holds between $\lceil L/2 \rceil$ and L data records (inclusive)
 - All the leaves are at the same level
- Internal nodes store key values which guide searching in the tree
 - An internal node always has between $\lceil M/2 \rceil$ and M children (inclusive)
 - (except the root, which, if it is not a leaf, can have between 2 and M children)
 - An internal node holds one fewer keys than it has children:
 - the leftmost child has no key stored for it
 - every other child has a key stored which is equal to the smallest key in the subtree rooted at that child
A B+-tree with $M=4$, $L=3$

- Every internal node must have 2, 3, or 4 children.
- Every leaf is at the same level (level 2 in the tree shown), and every leaf must have 2 or 3 data records (keys only shown).
A B+-tree with $M=4$, $L=3$

Insert following sequence of numbers: 12, 13, 4, 8, 1, 15, 18, 19
Designing a B+ tree

- Suppose each key takes K bytes, and each pointer to a child node takes P bytes.
 - then each internal node must be able to hold $M \times P + (M-1) \times K$ bytes.

- Suppose each data record takes R bytes.
 - then each leaf node must be able to hold $R \times L$ bytes.

- If a disk block contains B bytes, then you should have M and L as large as possible and still satisfy these inequalities (assume $R \leq B$; if not, you can use multiple blocks for each leaf):
 - $B \geq M \times P + (M-1) \times K$, and so: $M \leq \frac{B+K}{P+K}$
 - $B \geq R \times L$, and so: $L \leq \frac{B}{R}$
Designing B+ tree

• Suppose each data record takes 6 bytes and each disk block is 36 bytes. What should be the value of L in the B+ tree?

 A. 1
 B. 4
 C. 5
 D. 6

D. 6
Designing B+ tree

Suppose both the key and the child pointer use 4 bytes and each disk block is 36 bytes. What should be the value of M in the B+ tree?

A. 1
B. 4
C. 5
D. 6

\[M \leq \frac{B + k}{p + w} = \frac{36 + 4}{4 + 5} \]

=
Designing a B+-tree, cont’d

• The branching factor in a B+-tree is at least $M/2$ (except possibly at the root), and there are at least $L/2$ records in each leaf node.

• So, if you are storing N data records, there will be at most $2N/L$ leaf nodes.

• There are at most $(2N/L) / (M/2)$ nodes at the level above the leaves; etc.

• Therefore: the height of the B-tree with N data records is at most
 \[
 \log_{M/2} (2N/L) = \log_{M/2} N - \log_{M/2} L + \log_{M/2} 2
 \]

• In a typical application, with 32-bit int keys, 32-bit disk block pointers, 1024-byte disk blocks, and 256-byte data records, we would have:
 - $M = 128$, $L = 4$
 - And the height of the B+-tree storing N data records would be at most $\log_{64} N$.

• How does all this relate to the performance of operations on the B+-tree?
Analyzing find in B+-trees: more detail

• Assume a two-level memory structure: reading a disk block takes \(T_d \) time units; accessing a variable in memory takes \(T_m \) time units.

• The height of the tree is at most \(\log_{M/2} N \); this is the maximum number of disk blocks that need to be accessed when doing a find.
 - so the time taken with disk accesses during a find is at most \(T_d \cdot \log_{M/2} N \).

• The number of items in an internal node is at most \(M \); assuming they are sorted, it takes at most \(\log_2 M \) steps to search within a node, using binary search.
 - so the time taken doing search within internal nodes during a find is no more than \(T_m \cdot \log_2 M \cdot \log_{M/2} N \).
 - Which is about the same as \(T_m \cdot \log_2 N \) since \(\log_{M/2} N = \log_2 N / (\log_2 M/2) \).

• The number of items in a leaf node is at most \(L \); assuming they are sorted, it takes at most \(\log_2 L \) steps to search within a node, using binary search.
 - so the time taken searching within a leaf node during a find is at most \(T_m \cdot \log_2 L \).
Analyzing find in B+-trees: still more detail

• Putting all that together, the time to find a key in a B-tree with parameters M, L, and memory and disk access times T_m and T_d is at most

 $T_d * \log_{M/2} N + T_m * \log_2 M * \log_{M/2} N + T_m * \log_2 L$

• This formula shows the breakdown of find time cost, distinguishing between time due to disk access (the first term) and time due to memory access (the last 2 terms)

• This more complete analysis can help understand issues of designing large database systems using B+-tree design

• For example, from the formula we can see that disk accesses (the first term) will dominate the total runtime cost for large N if

\[
\frac{T_d}{T_m} \gg \log_2 M
\]

• This will almost certainly be true, for typical inexpensive disks and memory and reasonable choices of M

• And so the biggest performance improvements will come from faster disk systems, or by storing as many top levels of the tree as possible in memory instead of on disk
2-3 Tree

- Every internal node has either two or three children
- We say that T is a 2-3 tree if and only if one of the following statements hold
 - T is empty
 - T is a 2-node r with data element a. If r has left child L and right child R, then
 - L and R are non-empty 2-3 trees of the same height,
 - a is greater than each element in L, and
 - a is less than or equal to each data element in R.
 - T is a 3-node r with data elements a and b, where $a < b$. If r has left child L, middle child M, and right child R, then
 - L, M, and R are non-empty 2-3 trees of equal height,
 - a is greater than each data element in L and less than or equal to each data element in M, and
 - b is greater than each data element in M and less than or equal to each data element in R.
Insert in a 2-3 tree

• We will indicate leaf nodes with rectangles, and interior nodes with ellipses; and for simplicity we will just consider integer keys, with no associated data records
• Starting with an empty tree, insert 22; then 41

Insert 22: 22,

Insert 41: 22, 41

• Now insert 17...
Insert in a 2-3 tree, cont’d

• Inserting the third key would overflow the root/leaf! This is not a legal 2-3 tree:

[Diagram: Insert 17: 17, 22, 41]

• This node must be split into two. Since this is the root that is being split, a new root is formed: the tree grows in height

[Diagram: Root node 22, with children 17, 41]
Insert in a 2-3 tree, still cont’d

• Suppose insertions have continued until this tree is produced:

• What happens if 5 is inserted?
Insert in a 2-3 tree, still cont’d

Now insert 65....
Insert in a 2-3 tree, still cont’d
2-3 tree converted to red-black tree
(2-3-4) B-trees
(2-3-4) B-trees == RBTs!
So which are asymptotically faster? RB-trees or 2-3-4 (B) trees?

A. RB trees
B. B-trees
C. They are the same
A note about graph algorithm time costs

• The graph algorithms we will study have fast algorithms:
 • Find shortest path in unweighted graphs
 • Solved by basic breadth-first search: \(O(|V|+|E|)\) worst case
 • Find shortest path in weighted graphs
 • Solved by Dijkstra’s algorithm: \(O(|E| \log|V|)\) worst case
 • Find minimum-cost spanning tree in weighted graphs
 • Solved by Prim’s or Kruskal’s algorithm: \(O(|E| \log|V|)\) worst case
• The “greedy” algorithms used for solving these problems have polynomial time cost functions in the worst case
 • since \(|E| \leq |V|^2\), Dijkstra’s, Prim’s and Kruskal’s algorithms are \(O(|V|^3)\)
• As a result, these problems can be solved in a reasonable amount of time, even for large graphs; they are considered to be ‘tractable’ problems
• However, many graph problems do not have any known polynomial time solutions...!
Intractable graph problems

- For many interesting graph problems, the best known algorithms to solve them have exponential time costs $O(2^{|V|})$.

- In the worst case, these intractable problems simply cannot be solved exactly, except for quite small graphs (e.g. fewer than 100 vertices, even on the world’s fastest computers); the best known algorithms for these problems take too long to run.

- For these problems, simple greedy best-first algorithms do not work... Essentially the best approach known for solving them exactly is basically to try all the possibilities, and there can be exponentially many possibilities to try.

- These intractable graph problems are often members of the class called “NP-complete” problems, which includes many non-graph problems as well...
NP-complete problems

• A problem that can be exactly solved in time that is a polynomial function of the size of the problem is in the class “P” (for Polynomial time)

• A problem whose solution can be checked for correctness in time that is a polynomial function of the size of the problem is in the class “NP” (for Nondeterministic Polynomial time)
 - A “nondeterministic” computer could guess the solution to the problem, and then check if it is a solution in polynomial time, and never give a wrong answer.
 - Note that the class P is contained in NP

• A problem that is in NP, and is as hard as any problem in NP (an algorithm for it is also essentially an algorithm for any NP problem) is NP-complete

• For all the NP-complete problems, the best known algorithms take exponential time in the worst case...
 - ...However, nobody has yet been able to prove that there are no polynomial time algorithms for them! If you find one, you will be instantly very very famous

• What are some of the NP-complete graph problems?...
Examples of intractable graph problems

• Here are a few examples of the many graph problems that are NP-complete, and so seem to require $O(2^{|V|})$ time worst-case:
 • “Hamiltonian circuit”: Given a graph, say whether the graph has a cycle that includes all the vertices of the graph exactly once.
 • “Travelling salesman”: Given a weighted graph, find the Hamiltonian circuit that has the smallest total cost.
 • “Longest path”: Given a graph and two vertices s and d, find the longest path from s to d that doesn’t contain any cycles. (But note that “shortest path” is solvable in polynomial time!)
 • “Shortest total path length spanning tree”: Given a graph, find the spanning tree that has the smallest total path lengths between all pairs of vertices
 • “Steiner tree”: Given a graph (V,E) and a subset S of V, find the minimum-cost spanning tree that spans every vertex in S (and may also span some other vertices) (but note that if $S=V$, the problem is solvable in polynomial time!)
P vs NP

Is P a subset of NP?

A. True
B. False
The problem with intractable problems

- If a problem is NP-complete, the best known algorithms to solve it requires exponentially many steps in the worst case.
- Simple greedy algorithms do not work for these problems:
 - backtracking, or some other way of looking at, and checking, possible alternatives is usually required...
 - ... and there are exponentially many alternatives to check!
- For example:
 - The problem has N boolean variables, and you need to check the 2^N possible different assignments of truth values to them.
 - The problem has N items, and you need to check each of the 2^N different subsets of those items.
- Because of the exponential time costs of the best known solutions to these problems, you have to either...
 - restrict yourself to small instances of the problems, or
 - try to find approximate algorithms that are fast, but not always exactly correct.
P vs NP

Is P a subset of NP-complete?

A. True
B. False
Final Exam…

• 4 Parts

 • Part 1: Basic knowledge of data structures and C++
 • 20% to 40% of final score
 • Multiple choice

 • Part 2: Application, Comparison and Implementation of the data structures we have covered
 • 20% to 40% of final score
 • Short answers

 • Part 3: Simulating algorithms and run time analysis
 • 20% to 40% of final score
 • Short answers

 • Part 4: C++ and programming assignments
What would you like to review next class?

A. Multiway tries and ternary tries
B. Skip lists
C. Red-Black trees
D. B trees
E. Hashing