CSE 100

- Graphs
- Vertices, edges, paths, cycles
- Sparse and dense graphs
- Representations: adjacency matrices and adjacency lists

Reading: Weiss, Chapter 9
Kinds of data structures

• You are familiar with these kinds of data structures:
 • unstructured structures: sets
 • linear, sequential structures: arrays, linked lists
 • hierarchical structures: trees
• Now we will look at graphs
• Graphs consist of
 • a collection of elements, called “nodes” or “vertices”
 • a set of connections, called “edges” or “links” or “arcs”, between pairs of nodes
• Graphs are in general not hierarchical or sequential: there is no requirement for a distinguished root node or first node, no requirement that nodes have a unique parent or a unique successor, etc.
• Nodes in a graph can be connected to each other in arbitrary ways. This makes them a very flexible and useful data structure
Why graphs?

- Trees are a generalization of lists (a list is just a special case of a tree)...
- Graphs are a generalization of trees (a tree is just a special case of a graph)...
- So, graphs are very general structures and are very useful in many applications
 - the set of machines on the internet, and network lines between them, form a graph
 - the set of statements in a program, and flow of control between them, form a graph
 - the set of web pages in the world, and HREF links between them, form a graph
 - the set of transistors on a chip, and wires between them, form a graph
 - the set of possible base sequences and mutations in a DNA gene form a graph
 - the set of possible situations that can arise in solving a problem or playing a game, and moves that get you from one situation to another, form a graph
 - et cetera...
- We will look at a formal definition of a graph, some ways of representing graphs, and some important algorithms on graphs
Graphs: some definitions

• A graph $G = (V,E)$ consists of a set of vertices V and a set of edges E
• Each edge in E is a pair (v,w) such that v and w are in V.
 • If G is an undirected graph, (v,w) in E means vertices v and w are connected by an edge in G. This (v,w) is an unordered pair
 • If G is a directed graph, (v,w) in E means there is an edge going from vertex v to vertex w in G. This (v,w) is an ordered pair; there may or may not also be an edge (w,v) in E
• In a weighted graph, each edge also has a “weight” or “cost” c, and an edge in E is a triple (v,w,c)
• When talking about the size of a problem involving a graph, the number of vertices $|V|$ and the number of edges $|E|$ will be relevant
Graphs: an example

• Here is an unweighted directed graph:

\[V = \{ v_0, v_1, v_2, v_3, v_4, v_5, v_6 \} \]
• \(|V| = 7\)
• \(E = \{ (v_0,v_1), (v_1,v_3), (v_1,v_4), (v_2,v_0), (v_2,v_5), (v_3,v_2), (v_3,v_5), (v_4,v_1), (v_4,v_6), (v_6,v_5) \} \)
• \(|E| = 10\)
Graphs: more definitions

- A path in a graph \(G=(V,E) \) is a sequence of vertices \(v_1, v_2, ..., v_N \) in \(V \) such that \((v_i,v_{i+1}) \) is in \(E \) for all \(i = 1, ..., N-1 \).
- The **length** of a path is the number of edges in the path (might be zero)
- The **weighted length** of a path is the sum of the weights of the edges in the path
- A **simple path** is a path in which all the vertices are different (except the first and last can be the same)
- A **cycle** in a directed graph is a path of length \(\geq 1 \) in which the first and last vertices are the same (in an undirected graph, the edges in a cycle must be distinct)
- A **simple cycle** is a cycle that is a simple path
- If a directed graph has no cycles, it is called a **directed acyclic graph** (DAG)
 - Is the example graph on the previous page a DAG?
 - Note: Every tree is a DAG, but not every DAG is a tree. Example:
Dense and sparse graphs

If a directed graph has $|V|$ vertices, how many edges can it have?

- The first vertex can have an edge to every vertex (including itself): $|V|$ edges
- The second vertex can have an edge to every vertex (including itself): $|V|$ edges
- ... and so on for each of the $|V|$ vertices; and all these edges are distinct

So, the maximum total number of edges possible is $|E| = |V| \times |V| = |V|^2$

- A graph with “close to” $|V|^2$ edges is considered dense
- A graph with “close to” $|V|$ edges is considered sparse
Representing graphs

There are two major techniques for representing graphs:
- Adjacency matrix
- Adjacency list

Each of these has advantages and we will look at each
Adjacency matrices

- An adjacency matrix is a 2D array
- The \([i][j]\) entry in the matrix encodes connectivity information between vertices \(i\) and \(j\)
 - For an unweighted graph, the entry is “1” or “true” if there is an edge, “0” or “false” if there is no edge
 - For a weighted graph, the entry is the weight of the edge, or “infinity” if there is no edge
 - For an undirected graph, the matrix will be symmetric (or you could just use an upper-triangular matrix)
- There are \(|V|\) rows and \(|V|\) columns in an adjacency matrix, and so the matrix has \(|V|^2\) entries
- This is space inefficient for sparse graphs
Adjacency matrix, an example

- Adjacency matrix for the example graph:

```
<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
```
Adjacency lists

- An adjacency list representation uses, well, lists
- Each vertex in the graph has associated with it a list of the vertices adjacent to it
- That is, if \((v_j, v_k) \) is an edge in the graph, then \(v_j \)’s adjacency list contains (a reference to) \(v_k \)
 - For a weighted graph, the list entry would also contain the weight of the edge
 - For an undirected graph, if \(v_j \)’s adjacency list contains \(v_k \), then \(v_k \)’s adjacency list should contain \(v_j \)
- Using an adjacency list representation, each edge in a directed graph is represented by one item in one list; and there are as many lists as there are vertices
- Therefore the storage required is proportional to \(|V| + |E|\), which is much better than \(|V|^2\) for sparse graphs, and comparable to \(|V|^2\) for dense graphs
Adjacency lists, an example

• Adjacency lists to represent the example graph:

V0: \{ V1 \}
V1: \{ V3, V4 \}
V2: \{ V0, V5 \}
V3: \{ V2, V5 \}
V4: \{ V1, V6 \}
V5: \{ \}
V6: \{ V5 \}
Next time

- Algorithms on graphs
- Breadth first, depth first searches
- Shortest path in unweighted graphs

Reading: Weiss, Chapter 9, 10