Introduction

Computer Vision I
CSE 252A
Lecture 1

• We’ll begin with some introductory material …

• … and end with
 – Syllabus
 – Organizational materials
 – Wait list

What is computer vision?

What is Computer Vision?

• Trucco and Verri: Computing properties of the 3-D world from one or more digital images

• Sockman and Shapiro: To make useful decisions about real physical objects and scenes based on sensed images

• Ballard and Brown: The construction of explicit, meaningful description of physical objects from images.

• Forsyth and Ponce (Text): Extracting descriptions of the world from pictures or sequences of pictures

Why is this hard?

Why is this hard?

What is in this image?
1. A hand holding a man?
2. A hand holding a mirrored sphere?
3. An Escher drawing?

• Interpretations are ambiguous
• The forward problem (graphics) is well-posed
• The “inverse problem” (vision) is not

Underestimates

“640K ought to be enough for anybody.” – Bill Gates, 1981

“… in three to eight years we will have a machine with the general intelligence of an average human being … The machine will begin to educate itself with fantastic speed. In a few months it will be at genius level and a few months after that its powers will be incalculable …”

– Marvin Minsky, LIFE Magazine, 1970
Should Computer Vision follow from our understanding of Human Vision?

Yes & No

1. Who would ever be crazy enough to even try creating machine vision?
2. Human vision “works”, and copying is easier than creating.
3. Secondary benefit – in trying to mimic human vision, we learn about it.

1. Why limit oneself to human vision when there is even greater diversity in biological vision
2. Why limit oneself to biological vision when there may be greater diversity in sensing mechanism?
3. Biological vision systems evolved to provide functions for “specific” tasks and “specific” environments. These may differ for machine systems
4. Implementation – hardware is different, and synthetic vision systems may use different techniques/methodologies that are more appropriate to computational mechanisms

Hermann Grid

Scan your eyes over the figure. Do you see the gray spots at the intersections? Stare at one of them and it will disappear.

How many red X’s are there?

Raise your hand when you know.

How many red X’s are there?

Raise your hand when you know.
Related Fields

The Near Future: Ubiquitous Vision

- Digital video has become really cheap.
- It’s widely embedded in cell phones, cars, games, etc.
- 99.9% of digitized video isn’t seen by a person.
- That doesn’t mean that only 0.1% is important!

Applications: touching your life

- Optical Character Recognition
- Football
- Movies
- Surveillance
- HCI – hand gestures
- Aids to the blind
- Face recognition & biometrics
- Road monitoring
- Industrial inspection
- Virtual Earth; street view
- Robotic control
- Autonomous driving
- Space: planetary exploration, docking
- Medicine – pathology, surgery, diagnosis
- Microscopy
- Military
- Remote Sensing
- Digital photography
- Google Goggles
- Video games

Earth viewers (3D modeling)

- Image from Microsoft’s Virtual Earth (now Bing Maps)
 (see also: Google Earth)

Photosynth

- http://photosynth.net
- Based on Photo Tourism technology developed by Noah Snavely, Steve Seitz, and Rick Szeliski

Optical character recognition (OCR)

Technology to convert scanned docs to text

- If you have a scanner, it probably came with OCR software

License plate readers

Digit recognition, AT&T labs
Face detection

• Most new digital cameras now detect faces, so do smart phones…
 – Canon, Sony, Fuji, …

Smile detection

Sony Cyber-shot® T70 Digital Still Camera

Object recognition (in supermarkets)

LaneHawk by EvolutionRobotics (now part of iRobot)
"A smart camera is flush-mounted in the checkout lane, continuously watching for items. When an item is detected and recognized, the cashier verifies the quantity of items that were found under the basket, and continues to close the transaction. The item can remain under the basket, and with LaneHawk, you are assured to get paid for it…"

Face recognition

Who is she?

Vision-based biometrics

1984
Age 12

2002
Age 30

“How the Afghan Girl was Identified by Her Iris Patterns” Read the story.

Login without a password…

Face recognition systems now beginning to appear more widely on computers and smart phones
Object recognition (in mobile phones)

- Point & Find, Nokia
- SnapTell.com (now Amazon)
- Mobile Acuity
- Google Goggles

Special effects: shape capture

- The Matrix movies, ESC Entertainment, XYZRGB, NRC

Sports

- Vicon motion capture

Smart cars

- Mobileye
 - Vision systems currently in high-end BMW, GM, Volvo models
Vision-based interaction (and games)

Nintendo Wii has camera-based IR tracking built in.

Your face on a 3D avatar.

Xbox Kinect

Occipital structured sensor

And then there’s 3D printing …

Vision in space

NASA’s Mars Exploration Rover Spirit captured this westward view from atop a low plateau where Spirit spent the closing months of 2007.

Vision systems (JPL) used for several tasks

- Panorama stitching
- 3D terrain modeling
- Obstacle detection, position tracking
- For more, read “Computer Vision on Mars” by Matthies et al.

Robotics

NASA’s Mars Spirit Rover

http://www.robocup.org/

Autonomous Vehicles

First person vision

Google Glass

Oracam
Current state of the art

- You just saw examples of current systems.
 - Many of these are less than 5 years old
- This is a very active research area, and rapidly changing
 - Many new applications in the next 5 years
- To learn more about vision applications and companies
 - David Lowe maintains an excellent overview of vision companies

Image Interpretation - Cues

- Variation in appearance in multiple views
 - stereo
 - motion
- Shading & highlights
- Shadows
- Contours
- Texture
- Blur
- Geometric constraints
- Prior knowledge

An example of a cue:
Shading and lighting
Shading as a result of differences in lighting is

1. A source of information
2. An annoyance

Illumination Variability
An annoyance

“The variations between the images of the same face due to illumination and viewing direction are almost always larger than image variations due to change in face identity.”
 -- Moses, Adini, Ullman, ECCV ‘94

How do we understand shading
(An idealization of “engineering” research)

1. Construct a model of the domain (usually mathematical, based on physics).
2. Prove properties of that model to better understand the model and opportunities of using it.
3. Develop algorithms to solve a problem that is correct under the model.
4. Implement & evaluate it.
5. Question assumptions of the model & start all over again.
1. Image Formation

At image location \((x,y)\) the intensity of a pixel \(I(x,y)\) is

\[I(x,y) = a(x,y) \cdot n(x,y) \cdot s \]

where
- \(a(x,y)\) is the albedo of the surface projecting to \((x,y)\).
- \(n(x,y)\) is the unit surface normal.
- \(s\) is the direction and strength of the light source.

2. A property:
3-D Linear subspace

The set of images of a Lambertian surface with no shadowing is a subset of 3-D linear subspace.

\[L = \{ x | x = Bs, \forall s \in \mathbb{R}^3 \} \]

where \(B\) is a \(n\) by 3 matrix whose rows are product of the surface normal and Lambertian albedo.

3.4 : An implemented algorithm: Relighting

Single Light Source

5. Question Assumptions

- Many objects are not Lambertian (specular, complex reflectance functions).

The course

- Part 1: The Physics of Imaging
- Part 2: Early Vision
- Part 3: Reconstruction
- Part 4: Recognition

Part I of Course: The Physics of Imaging

- How images are formed
 - Cameras
 - What a camera does
 - Projection Models (Projective spaces, etc.)
 - How to tell where the camera was located
 - Light
 - How to measure light
 - What happens to light at surfaces
 - How the brightness values we see in images are determined
 - Color
 - The underlying mechanisms of color
 - How to describe it and measure it
Cameras, lenses, and sensors

• Pinhole cameras
• Lenses
• Projection models
• Geometric camera parameters

Figure 1.16 The first photograph on record, de noble servir, obtained by Napatine Nens in 1627. Collection Harling-Polet.

Lighting & Photometry

• How does measurement relate to light energy?
 • Sensor response
 • Light sources
 • Reflectance

Color

Part II: Early Vision in One Image

• Representing small patches of image
• Noise
• Filtering
• Edge Detection
• Corner Detection
• Texture
• Segmentation

Segmentation

• Which image components “belong together”?
• Belong together ≡ lie on the same object
• Cues
 – similar color
 – similar texture
 – not separated by contour
 – form a suggestive shape when assembled
Boundary Detection

http://www.robots.ox.ac.uk/~vgg/dynamics.html

Boundary Detection: Local cues

(Sharon, Balun, Brandt, Basri)

Part 3: Reconstruction from Multiple Images

- Photometric Stereo
 - What we know about the world from lighting changes.
- The geometry of multiple views
- Stereopsis
 - What we know about the world from having two eyes
- Structure from motion
 - What we know about the world from having many eyes
 - or, more commonly, our eyes moving.

Mars Rover

From Viking Lander, 1976
Facade (Debevec, Taylor and Malik, 1996)
Reconstruction from multiple views, constraints, rendering

Architectural modeling:
• photogrammetry;
• view-dependent texture mapping;
• model-based stereopsis.

Images with marked features

Resulting model & Camera Positions

Recovered model edges reprojected through recovered camera positions into the three original images

Video-Motion Analysis
• Where “things” are moving in image – segmentation.
• Determining observer motion (egomotion)
• Determining scene structure
• Tracking objects
• Understanding activities & actions

Forward Translation & Focus of Expansion
[Gibson, 1950]
Part 4: Recognition

Given a database of objects and an image determine what, if any of the objects are present in the image.

Recognition Challenges

• Within-class variability
 – Different objects within the class have different shapes or different material characteristics
 – Deformable
 – Articulated
 – Compositional

• Pose variability:
 – 2-D Image transformation (translation, rotation, scale)
 – 3-D Pose Variability (perspective, orthographic projection)

• Lighting
 – Direction (multiple sources & type)
 – Color
 – Shadows

• Occlusion – partial
• Clutter in background -> false positives

Recognition Example: Face Detection:
Classify face vs. non-face

Why is Face Recognition Hard?
Many faces of Madonna

The Syllabus

http://cseweb.ucsd.edu/classes/fa14/cse252A-b/

• 19 lectures, 2 holidays
 – Veterans Day: Tuesday, November 11
 – Thanksgiving: Thursday, November 27

• 4 homework assignments + HW0
• Final exam
 – Friday, December 19, 7:00 PM-10:00 PM

Text

• The primary course text is:

• The secondary text is: Rick Szeliski’s book Computer Vision: Algorithms and Applications; Printed copy available, also softcopy online http://szeliski.org/Book/
Announcements

- HW0
 - Piazza, MATLAB or Python, and LaTeX
 - due next Thursday Oct 9
- Read:
 - Chapters 1 & 2 of Forsyth & Ponce
 - Chapter 1 of Szeliski (Optional)