CSE 240A:
Principles of Computer Architecture
Professor: Michael Taylor

UCSD Department of Computer Science & Engineering

http://www.cse.ucsd.edu/classes/fa14/cse240A-a/
Computer Architecture from 10,000 feet

foo(int x)
{ .. }
Computer Architecture from 10,000 feet

foo(int x) { .. }

Class of application

An impossibly large gap!

In the olden days:

“In 1942, just after the United States entered World War II, hundreds of women were employed around the country as computers...” (source: IEEE)
The Great Battles in Computer Architecture Are About How to Refine the Abstraction Layers

foo(int x) { .. }

Computation
- Language
- Compiler
- ISA
- Micro Architecture
- Register-Transfer Level
- Circuits
- Devices
- Materials Science

Fortran
- IBM 360, VLIW
- RISC, T’meta
- Superscalar, caches

Mead & Conway

Physics
Abstractions protect us from change -- but must also change as the world changes.
Abstraction Layers - reflected in organization of research communities

Computation
- Language
- Compiler
- ISA
- Micro Architecture
- Reg-Transfer Level
- Circuits
- Devices
- Materials Science

Physics
- International Symposium on Computer Architecture (ISCA)
- High Performance Computer Architecture (HPCA)
- Architectural Support for Programming Languages and OS (ASPLOS)
- International Symposium on Microarchitecture (MICRO)
- Design Automation Conference (DAC)
- Int. Conf. Computer Aided Design (ICCAD)
- International Solid State Circuit Conference (ISSCC)
- International Electron Devices Meeting (IEDM)
Classic ISSCC (Circuits) Paper: "How we designed a chip and how fast / low power it is."

TABLE IV
Voltage/Frequency Schmoo

<table>
<thead>
<tr>
<th></th>
<th>48C</th>
<th>49C</th>
<th>50C</th>
<th>51C</th>
<th>52C</th>
<th>53C</th>
<th>54C</th>
<th>55C</th>
<th>56C</th>
<th>57C</th>
<th>58C</th>
<th>59C</th>
<th>60C</th>
<th>61C</th>
<th>63C</th>
<th>61C</th>
</tr>
</thead>
<tbody>
<tr>
<td>39C</td>
<td>39C</td>
<td>40C</td>
<td>41C</td>
<td>42C</td>
<td>42C</td>
<td>43C</td>
<td>44C</td>
<td>45C</td>
<td>45C</td>
<td>46C</td>
<td>47C</td>
<td>47C</td>
<td>48C</td>
<td>49C</td>
<td>39C</td>
<td>39C</td>
</tr>
<tr>
<td>1W</td>
<td>25C</td>
<td>26C</td>
</tr>
</tbody>
</table>

Freq (GHz)

- 2
- 4
- 6
- 8
- 10
- 12
- 14
- 16
- 18
- 20
- 22
- 24
- 26
- 28
- 30
- 32
- 34
- 36
- 38
- 40
- 42
- 44
- 46
- 48
- 50
- 52

Failed
90 nm Generation Transistor

- Nickel Silicide Layer
- Silicon Gate Electrode
- 1.2 nm SiO₂ Gate Oxide
- Strained Silicon

No other company combines these transistor features at the 90 nm generation.

Intel

Figure 11: 1.2 nm gate oxide time to fail vs. electric field.

Figure 6: NMOS I_{ON} vs. I_{OFF} at 1.0V and 1.2V.
Classic Int. Electron Device Meeting (IEDM)
Paper: “How we designed a wire”
The focus of this class

Language
Compiler
ISA
Micro Architecture
Reg-Transfer Level
Circuits
Devices
Materials Science

International Symposium on Computer Architecture (ISCA)
High Performance Computer Architecture (HPCA)
Architectural Support for Programming Languages and OS (ASPLOS)
International Symposium on Microarchitecture (MICRO)
Design Automation Conference (DAC)
Int. Conf. Computer Aided Design (ICCAD)
International Solid State Circuit Conference (ISSCC)
International Electron Devices Meeting (IEDM)
Change: Power
Santa Clara, we have a problem

More pipeline stages,
less efficient, more power.

Just can’t remove
> 100 watts
without great expense on a desktop.

All computing is now
Low Power Computing!
Power Density

Power doubles every 4 years
5-year projection: 200W total, 125 W/cm²!

P=VI: 75W @ 1.5V = 50 A!

From “New Microarchitecture Challenges in the Coming Generations of CMOS Process Technologies”
Change: microprocessor frequency versus time

Faster Circuits,
Faster + Smaller Transistors,
Fast Microarchitecture

Power Limited

Intel x86

7 yr / 10x (39%)
5 yr / 10x (58%)
20 yr / 10x (12%)
Intel

P3: 12 stages
P4 (b4 paper): 20 stages
P4/prescott: 31 stages
P5/Tejas: >> 31 stages
Intel

P3: 12 stages
P4 (b4 paper): 20 stages
P4/prescott: 31 stages
P5/Tejas: >> 31 stages
Intel

P3: 12 stages
P4 (b4 paper): 20 stages
P4/prescott: 31 stages
P5/Tejas: >> 31 stages
Back to the future

P3:
12 stages

P4 (b4 paper):
20 stages

P4/prescott:
31 stages

P5/Tejas:
31 stages

Same as 1996 – I can’t sell that. I must call it something new --- Pentium...Mmmm... Great Scott, I’ve got it!
And forward to multi-core

Intel Core Duo
Future outlook

Old Trend: Frequency

Current Trend: Parallel processing

Future Trend: Heterogeneity at all levels
- specialized coprocessors
- more and more materials
- stacking of dies from diff. fabs

→ Processors stuck at 4 GHz. Intel and others are pushing multi-core and specialization
Abstractions protect us from change -- but must also change as the world changes.

Changes in application space

- Language
- Compiler
- ISA
- Micro Architecture
- Register-Transfer Level
- Circuits
- Devices
- Materials Science

Virtual Homicide (Quake)
Photographic memory
Telepathic
Mathematical Genius
Etc...

Physics
And on that note: PC’s are not the only important class of computer - in fact they are in the minority (~2%)!
Course Work and Grading

• See website!

http://www-cse.ucsd.edu/classes/fa14/cse240A-a/
Text vs. Lectures vs. Prereq (141)

Assigned readings for each lecture posted on website!

- Lectures will include material not in the text…text will include material not in the lectures. (Midterms and homework will give you an opportunity to calibrate what you need to know.)

- Resource limitations prevent us from addressing material from the prerequisite, CSE 141, in office hours…but we are happy to refer you to the book or your classmates.
Course Staff

Instructor: Michael Taylor
Email: mbtaylor@ucsd.edu
Office Hours:
EBU 3b 3202
Tuesday right after class

TAs:

Moein
Shelby
About Me

PowerMush IV
PowerMush 3

x86 asm
Coding
68K
C

5 15 20 25 30
About Me

~120 million transistors
Course Outline

1. Technology
2. Measuring *Goodness*
3. Out-of-Order Superscalar
4. Memory Hierarchy
5. Power

Please watch the website for course updates, reading assignments and homework assignments!