CSE 140 Lecture 11
Standard Combinational Modules

CK Cheng
CSE Dept.
UC San Diego
Part III - Standard Combinational Modules (Harris: 2.8, 5)

Signal Transport
- Decoder: Decode address
- Encoder: Encode address
- Multiplexer (Mux): Select data by address
- Demultiplexer (DeMux): Direct data by address
- Shifter: Shift bit location

Data Operator
- Adder: Add two binary numbers
- Multiplier: Multiply two binary numbers
Interconnect: Decoder, Encoder, Mux, DeMux

Decoder: Decode the address to assert the addressed device
Mux: Select the inputs according to the index addressed by the control signals
1. Decoder

- Definition
- Logic Diagram
- Application (Universal Set)
- Tree of Decoders
iClicker: Decoder Definition

A. A device that decodes
B. An electronic device that converts signals from one form to another
C. A machine that converts a coded text into ordinary language
D. A device or program that translates encoded data into its original format
E. All of the above
Decoder Definition: A digital module that converts a binary address to the assertion of the addressed device

\[E \text{ (enable)} \]

\[\begin{array}{c c c}
0 & 1 & 2 \\
0 & 1 & 2 \\
3 & 4 & 5 \\
6 & 7 \\
\end{array} \]

n inputs
\(n = 3 \)

\(2^n \) outputs
\(2^3 = 8 \)

n to \(2^n \) decoder function:

\[y_i = 1 \text{ if } E = 1 \& (I_2, I_1, I_0) = i \]

\[y_i = 0 \text{ otherwise} \]
1. Decoder: Definition

- N inputs, 2^N outputs
- One-hot outputs: only one output HIGH at most

\[
\begin{array}{|c|c|c|c|c|}
\hline
A_1 & A_0 & Y_3 & Y_2 & Y_1 & Y_0 \\
\hline
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 \\
\hline
\end{array}
\]
Decoder: Logic Diagram

Output Expression: $y_i = E \cdot m_i$

$y_0 = 1$ if $E=1$ & $(I_2, I_1, I_0) = (0,0,0)$

$y_7 = 1$ if $E=1$ & $(I_2, I_1, I_0) = (1,1,1)$
1. Decoder: Definition

PI Q: What is the output $Y_{3:0}$ of the 2:4 decoder for $(A_1, A_0) = (1,0)$?

A. (1, 1, 0, 0)
B. (1, 0, 1, 1)
C. (0, 0, 1, 0)
D. (0, 1, 0, 0)
Decoder Application: universal set \{\text{Decoder, OR}\}

Example:
Implement the following functions with a 3-input decoder and OR gates.

i) \(f_1(a,b,c) = \Sigma m(1,2,4) \)

ii) \(f_2(a,b,c) = \Sigma m(2,3), \)

iii) \(f_3(a,b,c) = \Sigma m(0,5,6) \)
Decoder Application: universal set \{Decoder, OR\}

Decoder produces minterms when $E=1$. We can use an OR gate to collect the minterms to cover the On-set. For the Don’t Care-Set, we can just ignore the terms.
Decoder Application: universal set \{\text{Decoder, OR}\}

Example: Implement functions
i) \(f_1(a,b,c) = \Sigma m(1,2,4) + \Sigma d(0,5),\)
ii) \(f_2(a,b,c) = \Sigma m(2,3) + \Sigma d(1,4),\)
iii) \(f_3(a,b,c) = \Sigma m(0,5,6)\)
with a 3-input decoder and OR gates.
Decoders

- OR minterms

\[Y = AB + AB \]

\[Y = A \oplus B \]
Tree of Decoders: Scale up the size of the decoders using a tree structure

Implement a $4-2^4$ decoder with $3-2^3$ decoders.
Tree of Decoders

Implement a $6-2^6$ decoder with $3-2^3$ decoders.
PI Q: A four variable switching function $f(a,b,c,d)$ can be implemented using which of the following?

A. 1:2 decoders and OR gates
B. 2:4 decoders and OR gates
C. 3:8 decoders and OR gates
D. All of the above
E. None of the above
2. Encoder

• Definition
• Logic Diagram
• Priority Encoder
iClicker: Definition of Encoder

A. Any program, circuit or algorithm which encodes
B. In digital audio technology, an encoder is a program that converts an audio WAV file into an MP3 file
C. A device that convert a message from plain text into code
D. A circuit that is used to convert between digital video and analog video
E. All of the above
Encoder Definition: A digital module that converts the assertion of a device to the binary address of the device.

At most one $I_i = 1$.

$(y_{n-1}, \ldots, y_0) = i$ if $I_i = 1$ \& $E = 1$

$(y_{n-1}, \ldots, y_0) = 0$ otherwise.

$A = 1$ if $E = 1$ and one i s.t. $I_i = 1$

$A = 0$ otherwise.
Encoder: Logic Diagram

I_1 I_3 I_5 I_7 → En → y_0

I_2 I_3 I_6 I_7 → En → y_1

I_4 I_5 I_6 I_7 → En → y_2

I_0 I_1 I_6 I_7 → A
Priority Encoder:

\[\begin{array}{c}
I_0 \\
1 \\
2 \\
3 \\
I_3 \\
\end{array}\]

\[\begin{array}{c}
0 \\
1 \\
\end{array}\]

\[\begin{array}{c}
y_0 \\
y_1 \\
Eo \\
Gs \\
E \\
\end{array}\]
Priority Encoder: Definition

Description: Input \((I_{2^{n-1}}, \ldots, I_0)\), Output \((y_{n-1}, \ldots, y_0)\)

\[(y_{n-1}, \ldots, y_0) = i \text{ if } I_i = 1 \& E = 1 \& I_k = 0 \]

for all \(k > i\) (high bit priority) or

for all \(k < i\) (low bit priority).

\[E_0 = 1 \text{ if } E = 1 \& I_i = 0 \text{ for all } i, \]

\[G_s = 1 \text{ if } E = 1 \& \exists i \text{ s.t. } I_i = 1. \]

\((G_s \text{ is like } A, \text{ and } E_0 \text{ passes on enable}).\)
Priority Encoder: Implement a 32-input priority encoder w/ 8 input priority encoders (high bit priority).