Lecture 7: Flow Control

CSE 123: Computer Networks
Alex C. Snoeren

No class Monday
Lecture 7 Overview

- Flow control
 - Go-back-N
 - Sliding window
Stop-and-Wait Performance

- Lousy performance if xmit 1 pkt \ll prop. delay
 - How bad?

- Want to utilize all available bandwidth
 - Need to keep more data “in flight”
 - How much? Remember the bandwidth-delay product?

- Also limited by quality of timeout (how long?)
Pipelined Transmission

- Keep multiple packets “in flight”
 - Allows sender to make efficient use of the link
 - Sequence numbers ensure receiver can distinguish frames

- Duplicate acknowledgements signal loss
 - ACK the highest *consecutive* frame received
 - Ignore (for now) non-sequential frames

CSE 123 – Lecture 7: Flow Control
Go-Back-

- Retransmit from point of loss upon duplicate ACK
 - Packets between loss event and retransmission are ignored
 - Also “go-back-N” if a timeout event occurs
- ACKs are cumulative
 - Acknowledge current frame and all previous ones
Send Window

- Bound on number of outstanding packets
 - Window “opens” upon receipt of new ACK
 - Window resets entirely upon a timeout

- Limits amount of waste
 - Still lots of duplicates
 - We can do better with selective retransmission

Go-Back-N Example with window size 3
Sliding Window

- Single mechanism that supports:
 - Multiple outstanding packets
 - Reliable delivery
 - In-order delivery
 - Flow control

- At the core of all modern ARQ protocols

- Stop-and-Wait is a special case
 - Receive window size of one
Window bounds outstanding unACKed data
 - Implies need for buffering at sender
“Last” ACK applies to in-order data
What to do on a timeout?
 - Go-Back-N: send all unacknowledged data on timeout
 - Selective Repeat: timer per packet, resend as needed
Sliding Window – Receiver

Receiver buffers too:
- data may arrive out-of-order
- or faster than can be consumed—flow control

Receiver ACK choices:
- Cumulative, Selective (exempt missing frames), Negative
Deciding When to Retransmit

- How do you know when a packet has been lost?
 - Ultimately sender uses timers to decide when to retransmit

- But how long should the timer be?
 - Too long: inefficient (large delays, poor use of bandwidth)
 - Too short: may retransmit unnecessarily (causing extra traffic)

- Right timer is based on the round-trip time (RTT)
 - Which can vary greatly for reasons well see later
Can we shortcut the timeout?

- Timeout is long in practice

- If packets are usually in order then out-of-order ACKs imply that a packet was lost
 - Negative ACK
 » Receiver requests missing packet
 - Fast retransmit
 » When sender receives multiple duplicate acknowledgements resends missing packet
Fast retransmit

- Don’t bother waiting
 - Receipt of duplicate acknowledgement (dupACK) indicates loss
 - Retransmit immediately

- Used in TCP
 - Need to be careful if frames can be reordered
Is ARQ the Only Way?

- No. We could use redundancy
 - Send additional data to compensate for lost packets

- Why not use retransmission?
 - Broadcast media with lots of receivers
 - If each one ACK/NAK then hard to scale
 - Lots of messages
 - Lots of state
 - Heterogeneous receivers
 - E.g., variable quality wireless reception
 - Highly lossy or very long delay channels (e.g., satellite)
For Next Time

- Keep reading 2.6 in P&D
- Keep going on the project…
- NO CLASS MONDAY!