Lecture 6: Reliable Transmission

CSE 123: Computer Networks
Alex C. Snoeren

HW 1 due NOW
Lecture 6 Overview

- Cyclic Remainder Check (CRC)
- Automatic Repeat Request (ARQ)
 - Acknowledgements (ACKs) and timeouts
- Stop-and-Wait
Checkums are easy to compute, but very fragile
- In particular, burst errors are frequently undetected
- We’d rather have a scheme that “smears” parity

Need to remain easy to implement in hardware
- So far just shift registers and an XOR gate

We’ll stick to Modulo-2 arithmetic
- Multiplication and division are XOR-based as well
- Let’s do some examples…
Modulo-2 Arithmetic

- **Multiplication**

 \[
 \begin{array}{c}
 1101 \\
 \underline{110} \\
 0000 \\
 11010 \\
 110100 \\
 \underline{\text{101110}} \\
 \end{array}
 \]

- **Division**

 \[
 1101 \overline{110} \]

 \[
 \begin{array}{c}
 101110 \\
 \underline{110} \\
 111 \\
 \underline{110} \\
 011 \\
 \underline{\text{000}} \\
 \underline{\text{110}} \\
 \end{array}
 \]
Cyclic Remainder Check

- Idea is to divide the incoming data, D, rather than add
 - The divisor is called the generator, g
- We can make a CRC resilient to k-bit burst errors
 - Need a generator of $k+1$ bits
- Divide 2^kD by g to get remainder, r
 - Remainder is called frame check sequence
- Send $2^kD - r$ (i.e., 2^kD XOR r)
 - Note 2^kD is just D shifted left k bits
 - Remainder must be at most k bits
- Receiver checks that $(2^kD-r)/g = 0$
CRC: Rooted in Polynomials

- We’re *actually* doing polynomial arithmetic
 - Each bit is actually a coefficient of corresponding term in a k^{th}-degree polynomial

 1101 is $(1 \times X^3) + (1 \times X^2) + (0 \times X^1) + (1 \times X^0)$

- Why do we care?
 - Can use the properties of finite fields to analyze effectiveness
 - Says any generator with two terms catches single bit errors
CRC Example Encoding

\[
\begin{align*}
 x^3 + x^2 + 1 &= 1101 \\
 x^7 + x^4 + x^3 + x &= 10011010
\end{align*}
\]

Generator
Message

k + 1 bit check sequence \(g\), equivalent to a degree-k polynomial

\[
\begin{align*}
 1101 & \quad 10011010000 \\
 1101 & \quad 1001 \\
 1101 & \quad 1000 \\
 1101 & \quad 1011 \\
 1101 & \quad 1100 \\
 1101 & \quad 1000 \\
 101 & \quad 1101 \\
\end{align*}
\]

Message plus \(k\) zeros (*\(2^k\))

Result:
Transmit message followed by remainder:

\[
10011010101
\]
CRC in Hardware

- Key observation is only subtract when MSB is one
 - Recall that subtraction is XOR
 - No explicit check for leading one by using as input to XOR

- Hardware cost very similar to checksum
 - We’re only interested in remainder at the end
 - Only need k registers as remainder is only k bits
CRC Example Decoding

\[x^3 + x^2 + 1 = 1101 \]
\[x^{10} + x^7 + x^6 + x^4 + x^2 + 1 = 10011010101 \]

\[k + 1 \text{ bit check sequence } g, \text{ equivalent to a degree}-k \text{ polynomial} \]

Received message, no errors

Result:

CRC test is passed
CRC Example Failure

\[x^3 + x^2 + 1 = 1101 \]
\[x^{10} + x^7 + x^5 + x^4 + x^2 + 1 = 10010110101 \]

\[\text{Generator} \]
\[\text{Received Message} \]

\[k + 1 \text{ bit check sequence } g, \text{ equivalent to a degree-}k \text{ polynomial} \]
\[1101 \]
\[10010110101 \]
\[\text{Received message} \]
\[1000 \]
\[1101 \]
\[\text{Two bit errors} \]
\[1011 \]
\[1101 \]
\[1101 \]
\[1101 \]
\[0101 \]

Remainder
\[D \mod g \]

Result:
CRC test failed

CSE 123 – Lecture 6: Reliable Transmission
Common Generators

<table>
<thead>
<tr>
<th>Generator</th>
<th>Polynomial</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRC-8</td>
<td>$x^8 + x^2 + x^1 + 1$</td>
</tr>
<tr>
<td>CRC-10</td>
<td>$x^{10} + x^9 + x^5 + x^4 + x^1 + 1$</td>
</tr>
<tr>
<td>CRC-12</td>
<td>$x^{12} + x^{11} + x^3 + x^2 + x^1 + 1$</td>
</tr>
<tr>
<td>CRC-16</td>
<td>$x^{16} + x^{15} + x^2 + 1$</td>
</tr>
<tr>
<td>CRC-CCITT</td>
<td>$x^{16} + x^{12} + x^5 + 1$</td>
</tr>
<tr>
<td>CRC-32</td>
<td>$x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + 1$</td>
</tr>
</tbody>
</table>
Error Handling Summary

- Add redundant bits to detect if frame has errors
 - A few bits can detect errors
 - Need more to correct errors

- Strength of code depends on Hamming Distance
 - Number of bitflips between codewords

- Checksums and CRCs are typical methods
 - Both cheap and easy to implement in hardware
 - CRC much more robust against burst errors
Picking up the Pieces

- Link layer is lossy
 - We deliberately threw away corrupt frames last lecture
 - Infrequent bit errors still lead to occasional frame errors
 » 10,000+ bits in each frame

- Things get even harrier if we consider multiple links
 - In a few lectures, we’ll start sending frames on long trips
 - Each intermediate stop might lose, corrupt, reorder, etc.
 - Regardless of cause, we’ll call loss events drops

- We want to provide reliable, in-order delivery
 - Can—and will—do this at multiple layers
Moving up the Stack

CSE 123 – Lecture 6: Reliable Transmission
Simple Idea: ARQ

- Receiver sends **acknowledgments (ACKs)**
 - Sender “times out” and retransmits if it doesn’t receive them
- Basic approach is generically referred to as **Automatic Repeat Request (ARQ)**

CSE 123 – Lecture 6: Reliable Transmission
Not So Fast…

- Loss can occur on ACK channel as well
 - Sender cannot distinguish data loss from ACK loss
 - Sender will retransmit the data frame
- ACK loss—or early timeout—results in duplication
 - The receiver thinks the retransmission is new data
Sequence Numbers

- Sequence numbers solve this problem
 - Receiver can simply ignore duplicate data
 - But must still send an ACK! (Why?)

- Simplest ARQ: **Stop-and-wait**
 - Only one outstanding frame at a time
For Next Time

- Read 2.6 in P&D