Lecture 26: Final Review

CSE 123: Computer Networks
Alex C. Snoeren

Project 2 due TONIGHT
Exam Overview

- Focus on topics since the midterm
 - But everything is fair game…

- Roughly the same style and length of the midterm
 - It won’t take the whole time
 - We’ll spend the first few minutes of the exam period announcing the Espresso Prize winners

- As before, you can bring a crib sheet
 - One double-sided 8.5x11” paper with anything on it
Take Home Portion

- Recall you completed a pre-survey at the beginning
 - Was worth a portion of your HW1 grade

- We are now asking you to complete a post-survey
 - Will be worth a portion of the final exam grade

https://www.surveymonkey.com/s/FRX5LG9

- Please complete anytime before the Final exam
 - And the CAPEs, too!
Router Functional Architecture

Control Plane
- Complex
- Per-control action
- May be slow

Data plane
- Simple
- Per-packet
- Must be fast

<table>
<thead>
<tr>
<th>Firewall</th>
<th>Reservation/Admission Control</th>
<th>Routing Protocols</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Classification Rules
- Routing Table
- Forwarding Table
- Packet Classification
- Switching
- Output Scheduling
Interconnect architecture

- Input & output connected via switch fabric

- Kinds of switch fabric
 - Shared Memory
 - Bus
 - Crossbar

- How to deal with transient contention?
 - Input queuing
 - Output queuing
Routing Challenges

- How to choose best path?
 - Defining “best” can be slippery

- How to scale to millions of users?
 - Minimize control messages and routing table size
 - Divide task into intra- and inter-AS

- How to adapt to failures or changes?
 - Node and link failures, plus message loss
Forwarding Options

- **Source routing**
 - Complete path listed in packet

- **Virtual circuits**
 - Set up path out-of-band and store path identifier in routers
 - Local path identifier in packet

- **Destination-based forwarding**
 - Router looks up address in forwarding table
 - Forwarding table contains (address, next-hop) tuples
Link-state Routing

- Routing is a distributed algorithm
 - React to changes in the topology
 - Compute the paths through the network

- Shortest-path link state routing
 - Flood link weights throughout the network
 - Compute shortest paths as a sum of link weights
 - Forward packets on next hop in the shortest path

- Motivation
 - Global information allows optimal route computation
 - Straightforward to implement and verify
Dijkstra’s Shortest Path

- Graph algorithm for single-source shortest path tree

\[
\begin{align*}
S & \leftarrow \{\} \\
Q & \leftarrow \text{<remaining nodes keyed by distance>} \\
\text{While } Q \neq \{\} \\
& \quad \text{u } \leftarrow \text{extract-min}(Q) \\
& \quad S \leftarrow S \cup \{u\} \\
& \quad \text{for each node } v \text{ adjacent to } u \\
& \quad \quad \text{“relax” the cost of } v
\end{align*}
\]
Distance Vector Routing

Iterative, asynchronous: each local iteration caused by:
- Local link cost change
- Distance vector update message from neighbor

Distributed:
- Each node notifies neighbors only when its DV changes
- Neighbors then notify their neighbors if necessary

Each node:

1. wait for (change in local link cost or message from neighbor)
2. recompute estimates
3. if distance to any destination has changed, notify neighbors
Bellman-Ford Algorithm

- Define distances at each node X
 - $d_x(y) =$ cost of least-cost path from X to Y
- Update distances based on neighbors
 - $d_x(y) = \min \{c(x,v) + d_v(y)\}$ over all neighbors V

\[d_u(z) = \min \{c(u,v) + d_v(z), c(u,w) + d_w(z)\} \]
Counting to Infinity Problem

Distance to C

Etc…
Mitigation Strategies

- **Hold downs**
 - As metric increases, delay propagating information
 - Limitation: Delays convergence

- **Loop avoidance**
 - Full path information in route advertisement
 - Explicit queries for loops (e.g. DUAL)

- **Split horizon**
 - Never advertise a destination through its next hop
 - A doesn’t advertise C to B
 - **Poison reverse**: Send negative information when advertising a destination through its next hop
 - A advertises C to B with a metric of ∞
 - Limitation: Only works for “loop”s of size 2
Autonomous Systems

- Internet is divided into **Autonomous Systems**
 - Distinct regions of administrative control
 - Routers/links managed by a single “institution”
 - Service provider, company, university, …

- Hierarchy of Autonomous Systems
 - Large, tier-1 provider with a nationwide backbone
 - Medium-sized regional provider with smaller backbone
 - Small network run by a single company or university

- Interaction between Autonomous Systems
 - Internal topology is not shared between ASes
 - … but, neighboring ASes interact to coordinate routing
Path-vector Routing

- Extension of distance-vector routing
 - Support flexible routing policies
 - Avoid count-to-infinity problem
- Key idea: advertise the entire path
 - Distance vector: send *distance metric* per destination
 - Path vector: send the *entire path* for each destination
A Simple BGP Route

- Destination prefix (e.g., 128.112.0.0/16)
- Route attributes, including
 - AS path (e.g., “7018 88”)
 - Next-hop IP address (e.g., 12.127.0.121)
Business Relationships

- Neighboring ASes have business contracts
 - How much traffic to carry
 - Which destinations to reach
 - How much money to pay

- Common business relationships
 - Customer-provider
 » E.g., Princeton is a customer of USLEC
 » E.g., MIT is a customer of Level3
 - Peer-peer
 » E.g., UUNET is a peer of Sprint
 » E.g., Harvard is a peer of Harvard Business School
Policy Support

- Each node can apply local policies
 - Path selection: Which path to use?
 - Path export: Which paths to advertise?

- Examples
 - Node 2 may prefer the path “2, 3, 1” over “2, 1”
 - Node 1 may not let node 3 hear the path “1, 2”
AS Relationships

A New Internet Model

- Flatter and much more densely interconnected Internet
- Disintermediation between content and "eyeball" networks
- New commercial models between content, consumer, and transit

Settlement free
Pay for BW
Pay for access BW
Multicast: Different Options

Source-based tree
- Efficient trees; low delay, even load
- Per-source state in routers (S,G)

Shared-tree
- Higher delay, skewed load
- Per-group state only (G)
Transport Layer

Application Layer

Transport Layer

Network Layer

Link Layer
Naming Processes/Services

- Process here is an abstract term for your Web browser (HTTP), Email servers (SMTP), hostname translation (DNS)

- How do we identify for remote communication?
 - Process id or memory address are OS-specific and transient

- So TCP and UDP use Ports
 - 16-bit integers representing mailboxes that processes “rent”
 - Identify process uniquely as (IP address, protocol, port)
User Datagram Protocol (UDP)

- Provides *unreliable message delivery* between processes
 - Source port filled in by OS as message is sent
 - Destination port identifies UDP delivery queue at endpoint
- Connectionless (no state about who talks to whom)

<table>
<thead>
<tr>
<th>0</th>
<th>16</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>SrcPort</td>
<td>DstPort</td>
<td></td>
</tr>
<tr>
<td>Checksum</td>
<td>Length</td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TCP Header Format

- Ports plus IP addresses identify a connection (4-tuple)

<table>
<thead>
<tr>
<th>Field</th>
<th>Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>SrcPort</td>
<td>0-9</td>
</tr>
<tr>
<td>DstPort</td>
<td>10-19</td>
</tr>
<tr>
<td>SequenceNum</td>
<td>20-23</td>
</tr>
<tr>
<td>Acknowledgment</td>
<td>24-27</td>
</tr>
<tr>
<td>HdrLen</td>
<td>28-29</td>
</tr>
<tr>
<td>Flags</td>
<td>30</td>
</tr>
<tr>
<td>AdvertisedWindow</td>
<td>31</td>
</tr>
<tr>
<td>Checksum</td>
<td></td>
</tr>
<tr>
<td>UrgPtr</td>
<td></td>
</tr>
<tr>
<td>Options</td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td></td>
</tr>
</tbody>
</table>
TCP Delivery

Application process

Send buffer

TCP

Write bytes

Transmit segments

Segment Segment ... Segment

Receive buffer

TCP

Application process

Read bytes
Three-Way Handshake

- Opens both directions for transfer

Active participant (client)

SYN, SequenceNum = x

SYN + ACK, SequenceNum = y,
Acknowledgment = x + 1

ACK, Acknowledgment = y + 1

Passive participant (server)

+data
Congestion Control

- How fast should a sending host transmit data?
 - Not to fast, not to slow, just right…

- Should not be faster than the sender’s share
 - Bandwidth allocation

- Should not be faster than the network can process
 - Congestion control

- Congestion control & bandwidth allocation are separate ideas, but frequently combined
Congestion Collapse

- Rough definition: “When an increase in network load produces a decrease in useful work”

- Why does it happen?
 - Sender sends faster than bottleneck link speed
 - Packets queue until dropped
 - In response to packets being dropped, sender retransmits
 - All hosts repeat in steady state…
Proactive vs. Reactive

- Congestion avoidance: try to stay to the left of the knee
- Congestion control: try to stay to the left of the cliff

CSE 123 – Lecture 26: Final Review
AIMD

- Increase slowly while we believe there is bandwidth
 - Additive increase per RTT
 - $cwnd += 1$ full packet / RTT

- Decrease quickly when there is loss (went too far!)
 - Multiplicative decrease
 - $cwnd /= 2$
TCP’s Various Phases

Slow Start + Congestion Avoidance + Fast Retransmit + Fast Recovery

Round-trip times vs. cwnd

Fast recovery
NA(p)T Example

2: NAT router changes packet source addr from 10.0.0.1:3345 to 138.76.29.7:5001, updates table

3: Reply arrives dest. address: 138.76.29.7:5001

4: NAT router changes packet dest addr from 138.76.29.7:5001 to 10.0.0.4:3345
Managing Overload

- Buffer Management
 - FIFO
 - RED

- Traffic Policing and Scheduling
 - Token Buckets
 - WFQ
RED Operation

Max thresh

Min thresh

Average Queue Length

$P(\text{drop})$

1.0

max_p

min_{th}

max_{th}

Avg queue length
Token Bucket Basics

- Parameters
 - r – average rate, i.e., rate at which tokens fill the bucket
 - b – bucket depth
 - R – maximum link capacity or peak rate (optional parameter)
- A bit is transmitted only when there is an available token

$$r \text{ bps}$$
$$b \text{ bits}$$
$$\leq R \text{ bps}$$

Maximum # of bits sent

$$\frac{b \cdot R}{(R-r)}$$

slope R

slope r

bits

<= R bps

r bps

time

Maximum # of bits sent
Fair Queuing

- Maintain a queue for each flow
 - What is a flow?

- Implements **max-min fairness**: each flow receives $\min(r_i, f)$, where
 - r_i – flow arrival rate
 - f – link fair rate (see next slide)

- **Weighted Fair Queuing** (WFQ) – associate a weight with each flow
Packet-Based WFQ

- Select the first packet that finishes in the fluid flow system.
Network-wide QoS

- Integrated services
 - Motivated by need for end-to-end guarantees
 - On-line negotiation of per-flow requirements
 - End-to-end per-router negotiation of resources
 - Complex

- Differentiated services
 - Motivated by economics (multi-tier pricing)
 - No per-flow state
 - Not end-to-end and not guaranteed services
 - Simple
802.11 Summary

- Common technology for local-area wireless
- Uses CSMA/CA
- Needs to handle hidden terminal problem
- Challenges due to asymmetric ranges
CSMA/CA

- Cannot detect collision with half-duplex radios

- Wireless MAC protocols often use **collision avoidance** techniques, in conjunction with a (**physical or virtual**) **carrier sense** mechanism

- Collision avoidance
 - Nodes negotiate to reserve the channel.
 - Once channel becomes idle, the node waits for a randomly chosen duration before attempting to transmit.
When A wants to send a packet to B, A first sends a Request-to-Send (RTS) to B.

On receiving RTS, B responds by sending Clear-to-Send (CTS), provided that A is able to receive the packet.

When C overhears a CTS, it keeps quiet for the duration of the transfer.

- Transfer duration is included in both RTS and CTS.
Parting thoughts…

- Good luck finishing up Project 2
 - We’ll announce Espresso prize winners at Final

- Final exam next Friday
 - 8-11am
 - WLH 2005 (right here)
 - You can bring one 2-sided 8.5x11 crib sheet
 - Must turn crib sheet in with your exam

- Have a great break!