
CSE252a – Computer Vision – Assignment 4
Instructor: Prof. David Kriegman.

Revision 0

Instructions:

• This assignment should be solved, and written up in groups of 2. Work alone only if you can
not find a partner. No groups of 3 are allowed.

• Submit your assignment electronically by email to obeijbom@cs.ucsd.edu with the subject line
CSE252 Assignment 4. The email should have two files attached.

1. A pdf file with your writeup. This should have all code attached in the appendix. Name
this file: CSE 252 hw4 writeup lastname1 lastname2.pdf.

2. A compressed archive with all your matlab code files. Name this file:
CSE 252 hw4 code lastname1 lastname2.zip.

The code is thus attached both as text in the writeup appendix and as m-files in the compressed
archive.

• Please make this a proper report, with methods, thoughts, comments and discussions. All
code should be tucked away in an appendix.

• No physical hand-in for this assignment.

• You may do problems on pen an paper, just scan and include in the writeup pdf file.

• In general, MATLAB code does not have to be efficient. Focus on clarity, correctness and
function here, and we can worry about speed in another course.

Overview

In this assignment you will implement the Lucas-Kanade algorithm for computing a dense optical
flow field at every pixel. You will then implement a corner detector and combine the two algorithms
to compute a flow field only at reliable corner points. Your input will be pairs or sequences of images
and your algorithm will output an optical flow field (u,v). Three sets of test images are available
from the course website. The first contains a synthetic (random) texture, the second a rotating
sphere1, and the third a corridor at Oxford university2. Before running your code on the images,
you should first convert your images to grayscale and map intensity values to the range [0,1]. I
use the synthetic dataset in the instructions below. Please include results on all three datasets in
your presentation. For reference, your optical flow algorithm should run in seconds if you vectorize
properly (for example, the eigenvalues of a 2x2 matrix can be computed directly). Again, no points
will be taken off for slow code, but it will make the experiments more pleasant to run.

Dense Optical Flow [5pts]

Implement the single-scale Lucas-Kanade optical flow algorithm. This involves finding the motion
(u,v) that minimizes the sum-squared error of the brightness constancy equations for each pixel in
a window. As a reference, read pages 191-198 in Introductory Techniques for 3-D Computer Vision
by Trucco and Verri3. Your algorithm will be implemented as a function with the following inputs,

1Courtesy of http://www.cs.otago.ac.nz/research/vision/Research/OpticalFlow/opticalflow.html
2Courtesy of the Oxford visual geometry group
3Availible on the course webpage. Password at Piazza

1

mailto:obeijbom@cs.ucsd.edu

Figure 1: Input images

5 10 15 20

2

4

6

8

10

12

14

16

18

20

Needlemap, windowsize: 15

Valid area, windowsize: 15

50 100 150 200 250

50

100

150

200

250

5 10 15 20

2

4

6

8

10

12

14

16

18

20

Needlemap, windowsize: 30

Valid area, windowsize: 30

50 100 150 200 250

50

100

150

200

250

5 10 15 20

5

10

15

20

Needlemap, windowsize: 100

Valid area, windowsize: 100

50 100 150 200 250

50

100

150

200

250

Figure 2: Result for the dense optical flow problem on the corridor image.

function [u, v, hitMap] = opticalFlow(I1,I2,windowSize, tau)

Here, u and v are the x and y components of the optical flow, hitMap a binary image indicating
where the corners are valid (see below), I1 and I2 are two images taken at times t = 1 and t = 2
respectively, windowSize is the width of the window used during flow computation, and τ is the
threshold such that if the smallest eigenvalue of ATA is smaller than τ , then the optical flow at that
position should not be computed. Recall that the optical flow is only valid in regions where

ATA =
(∑

I2x
∑
IxIy∑

IyIx
∑
I2y

)
has rank 2 (why?), which is what the threshold is checking. A typical value for τ is 0.01. Using
this value of τ , run your algorithm on all three image sets (the first two images of each set), for
three different windowsizes of your choise, to produce an image similar to Fig. 2. Also provide some
comments on performance, impact of windowsize etc.

2

(a) Result of the corner detection problem on
the corridor image.

(b) Result of sparse optical flow algorithm on
the corridor image.

Figure 3: Corner detection and sparse optical flow

Corner Detection [2pts]

Use your corner detector from Assignment 3 to detect 50 corners in the provided images. Use a
smoothing kernel with standard deviation 1, and windowsize of 7 by 7 pixels for your corner detection
throughout this assignment. Include a image similar to Fig. 3a in your report. If you were unable
to create a corner detection algorihtm in the previous assignment, please email the TA for code.

Sparse Optical Flow [3pts]

Combine Parts A and B to output an optical flow field at the 50 detected corner points. Include
result plots as in Fig. 3b. Select appropriate values for windowsize and τ that gives you the best
results. Provide a discussion about the focus of expansion (FOE) and mark manually in your images
where it is located. Is it possible to mark the FOE in all image pairs? Why not / why?

Your own images [3pts]

Run the developed code on an image pair that you capture. Does the method work? Any problems?
You will probably want to down-sample the images significantly if captured with a modern digital
camera.

Good luck!

3

