CSE 160
Lecture 14

Floating Point Arithmetic
Condition Variables
Announcements

• Pick up your regrade exams in office hours today
• All exams will be moved to student affairs on Wednesday
Today’s lecture

• Revisiting Gaussian Elimination
• Floating Point Arithmetic
• Condition Variables
• Testing and Debugging
Visualizing the Gaussian Elimination

- Add multiples of each row to later rows to make A upper triangular

 ... for each column k
 ... zero it out below the diagonal by adding multiples of row k to later rows
 for $k = 0$ to $n-1$
 ... for each row i below row k
 for $i = k+1$ to $n-1$
 ... add a multiple of row k to row i
 for $j = k+1$ to $n-1$
Eliminating the entries below the diagonal

- Add multiples of each row to lower rows to make A upper triangular
- For each column $k : 0$ to $n-1$
 - … subtract multiples of row k: $A[k,k+1:n]$ … from rows $i = k+1$ to n
 - … to zero out column k below row k
- Multipliers $m_{ik} = A[i,k]/A[k,k]$
- … cancel the elements below the diagonal: $A[k+1:n-1,k]$
- Update only to the right of & below $A[k,k]$ for $i = k+1$ to $n-1$
 $$A[i,k+1:n] = m_{ik} \times A[k,k+1:n]$$
Parallelization

• We’ll use 1D vertical strip partitioning
• The ■ represents outstanding work in succeeding k iterations
• We divide the trailing matrix + pivot column among the cores
• The pivot column is always owned by core 0
Communication and control

• Each thread in charge of eliminating N/P columns
• But as we eliminate columns, N is shrinking
• Pivot selection is serial work
• The trailing matrix multiplication parallelizes perfectly
Today’s lecture

• Revisiting Gaussian Elimination
• Floating Point Arithmetic
• Condition Variables
• Testing and Debugging
What is floating point?

• A representation
 ‣ $\pm2.5732\ldots \times 10^{22}$
 ‣ Single, double, extended precision
 ‣ NaN ∞

• A set of operations
 ‣ $+ = * / \sqrt{\text{rem}}$
 ‣ Comparison $< \leq = \neq \geq$
 ‣ Conversions between different formats, binary to decimal
 ‣ Exception handling

• IEEE Floating point standard P754
 ‣ Universally accepted
 ‣ W. Kahan received the Turing Award in 1989 for the design of IEEE Floating Point Standard
 ‣ Revised in 2008
IEEE Floating point standard P754

- Normalized representation \(\pm 1.d\ldots d \times 2^{\text{esp}} \)
 - Macheps = Machine epsilon = \(\varepsilon = 2^{-\text{significand bits}} \)
 relative error in each operation
 - OV = overflow threshold = largest number
 - UN = underflow threshold = smallest number
- \(\pm \text{Zero}: \pm \text{significand and exponent } = 0 \)

<table>
<thead>
<tr>
<th>Format</th>
<th># bits</th>
<th>#significand bits</th>
<th>macheps</th>
<th>#exponent bits</th>
<th>exponent range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
<td>32</td>
<td>23+1</td>
<td>(2^{-24} (~10^{-7}))</td>
<td>8</td>
<td>(2^{-126} - 2^{127} (~10^{+38}))</td>
</tr>
<tr>
<td>Double</td>
<td>64</td>
<td>52+1</td>
<td>(2^{-53} (~10^{-16}))</td>
<td>11</td>
<td>(2^{-1022} - 2^{1023} (~10^{+308}))</td>
</tr>
<tr>
<td>Double</td>
<td>(\geq 80)</td>
<td>(\geq 64)</td>
<td>(\leq 2^{-64} (~10^{-19}))</td>
<td>(\geq 15)</td>
<td>(2^{-16382} - 2^{16383} (~10^{+4932}))</td>
</tr>
</tbody>
</table>

Jim Demmel

©2013 Scott B. Baden / CSE 160 / Fall 2013
What happens in a floating point operation?

- Round to the nearest representable floating point number that corresponds to the exact value (correct rounding)
- Round to nearest value with the lowest order bit = 0 (rounding toward nearest even)
- Others are possible
- We don’t need the exact value to work this out!
- Applies to $+, \times, /, \sqrt{}$

Error formula: $\text{fl}(a \text{ op } b) = (a \text{ op } b)(1 + \delta)$ where

- δ one of $+, -, \times, /$
- $|\delta| \leq \varepsilon$
 - assuming no overflow, underflow, or divide by zero

Addition example

- $\text{fl}(\sum x_i) = \sum_{i=1:n} x_i(1 + e_i)$
- $|e_i| \sim (n-1)\varepsilon$
Denormalized numbers

- Compute: if \(a \neq b \) then \(x = a/(a-b) \)
- We should never divide by 0, even if \(a-b \) is tiny
- **Underflow** exception occurs when exact result \(a-b \) < underflow threshold \(\text{UN} \)
- Return a *denormalized number* for \(a-b \)
 - Relax restriction that leading digit is 1: \(\pm 0.d\ldots d \times 2^{\text{min}_\text{exp}} \)
 - Reserve the smallest exponent value, lose a set of small normalized numbers
 - Fill in the gap between 0 and \(\text{UN} \) uniform distribution of values
Anomalous behavior

• Floating point arithmetic is not associative

\[(x + y) + z \neq x + (y+z)\]

• Distributive law doesn’t always hold

• These expressions have different values when \(y \approx z\)

\[x*y - x*z \neq x(y-z)\]

• Optimizers can’t reason about floating point

• If we compute a quantity in extended precision (80 bits)
 we lose digits when we store to memory \(y \neq x\)

```c
float x, y=..., z=...;
x = y + z;
y=x;
```
NaN (Not a Number)

• Invalid exception
 ‣ Exact result is not a well-defined real number

 \[
 0/0, \sqrt{-1}
 \]

• NaN op number = NaN

• We can have a quiet NaN or an sNan
 ‣ Quiet –does not raise an exception, but propagates a distinguished value
 • E.g. missing data: \(\max(3, \text{NAN}) = 3 \)
 ‣ Signaling - generate an exception when accessed
 • Detect uninitialized data
Exception Handling

• An exception occurs when the result of a floating point operation is not representable as a normalized floating point number
 ‣ 1/0, √-1

• P754 standardizes how we handle exceptions
 ‣ Overflow: exact result > OV, too large to represent
 ‣ Underflow: exact result nonzero and < UN, too small to represent
 ‣ Divide-by-zero: nonzero/0
 ‣ Invalid: 0/0, √-1, log(0), etc.
 ‣ Inexact: there was a rounding error (common)

• Two possible responses
 ‣ Stop the program, given an error message
 ‣ Tolerate the exception, possibly repairing the error
An example

- Graph the function

\[f(x) = \frac{\sin(x)}{x} \]

- \(f(0) = 1 \)
- But we get a singularity @ \(x=0 \): \(1/x = \infty \)
- This is an “accident” in how we represent the function (W. Kahan)
- We *catch* the exception (divide by 0)
- Substitute the value \(f(0) = 1 \)
Exception handling

• An important part of the standard, 5 exceptions
 ‣ Overflow and Underflow
 ‣ Divide-by-zero
 ‣ Invalid
 ‣ Inexact
• Each of the 5 exceptions manipulates 2 flags
• Sticky flag set by an exception
 ‣ Remains set until explicitly cleared by the user
• Exception flag: should a trap occur?
 ‣ If so, we can enter a trap handler
 ‣ But requires precise interrupts, causes problems on a parallel computer
• We can use exception handling to build faster algorithms
 ‣ Try the faster but “riskier” algorithm
 ‣ Rapidly test for accuracy (possibly with the aid of exception handling)
 ‣ Substitute slower more stable algorithm as needed
Today’s lecture

- Revisiting Gaussian Elimination
- Floating Point Arithmetic
- Condition Variables
- Testing and Debugging
Recall Lock_guard

- The lock_guard constructor acquires (locks) the provided lock constructor argument
- When a lock_guard destructor is called, it releases (unlocks) the lock

```cpp
int val, v;
std::mutex valMutex;
...
{
    std::lock_guard<std::mutex> lg(valMutex);
    v = val;
}
if (v >= 0)
    f(v);
else
    f(-v);
```
Flexible locking with unique_lock

• The constructor need not acquire (lock) the provided lock constructor argument
• The destructor unlocks the lock, if currently owned

```cpp
std::mutex m;
{
    std::unique_lock<std::mutex> lock_a(m, std::defer_lock);
    std::lock(lock_a);
    ....
}
```
Condition variables

• Threads can signal one another with a message: “the buffer is ready”
• Or, we might want to wait for a certain time to elapse: but what if we fell asleep during the alarm?
• We could busy wait on an atomic variable, or a variable protected by a critical section, but this can be wasteful
• C++ provides condition variables, a preferable way to handle the above situations
Using Condition variables

• We need a lock in order to use a condition variable

• Wait() will check for the desired condition within a critical section protected by the lock
 ‣ If the condition has been met, wait() exits
 ‣ Else, it unlocks the mutex and the thread enters a wait state

• Notify_one() causes the thread waiting on the condition to awaken
 ‣ The thread reacquires the lock
 ‣ If the condition has been met, Notify_one() returns, with the lock in the acquired state
 ‣ Else it blocks again …. How can this happen?

©2013 Scott B. Baden / CSE 160 / Fall 2013
Example with condition variable (I)

```cpp
#include <mutex>
#include <condition_variable>
#include <thread>
#include <queue>

bool more_data_to_prepare() { return false; }
data_chunk prepare_data() { return data_chunk(); }

bool is_last_chunk(data_chunk&) { return true; }

std::mutex mut;
std::queue<data_chunk> data_queue;
std::condition_variable data_cond;
```
Example with condition variable (II)

```cpp
void Producer_T() {
    while(more_to_produce()) {
        data_chunk const data=Produce();
        std::lock_guard<std::mutex> lk(mut);
        data_queue.push(data);
        data_cond.notify_one();
    }
}

void Consumer_T() {
    while(true) {
        std::unique_lock<std::mutex> lk(mut);
        data_cond.wait(lk,[{}]{return !data_queue.empty();});
        data_chunk data=data_queue.front();
        data_queue.pop();
        lk.unlock();
        Consume(data);
        if(is_last_chunk(data))
            break;
    }
}

int main() {  
    std::thread t1(Producer_T);
    std::thread t2(Consumer_T);
    t1.join();
    t2.join();
}
```

©2013 Scott B. Baden / CSE 160 / Fall 2013
Barrier\((int NT = 2)\): arrival(UNLOCKED), departure(LOCKED), count=0 \{\} ;

void bsync\()\{
 unique_lock<mutex> lk(mtx, std::defer_lock);
 lk.lock();
 if (++ndone < _nt)
 cvar.wait(lk);
 else{
 ndone = 0;
 cvar.notify_all();
 }
}\;

Barrier\((int NT=2)\): arrival(UNLOCKED), departure(LOCKED), count=0 \{\};

void bsync\()\{
 arrival.lock();
 if (++count < NT) arrival.unlock();
 else departure.unlock();
 departure.lock();
 if (--count > 0) departure.unlock();
 else arrival.unlock();
}\;

• Cleaner design than with locks only
Today’s lecture

- Revisiting Gaussian Elimination
- Floating Point Arithmetic
- Condition Variables
- Testing and Debugging
Fin