Synchronization in applications
Performance Characterization

Scott B. Baden
Announcements

- Quiz will be held in section on Wednesday
Today’s lecture

• Revisiting Parallel Merge
• More on synchronization
• Performance Characterization
Recall merge sort

- Divide and conquer algorithm
- Running time $O(N \lg N)$
- Traditional algorithm uses sequential merge, running in time $O(m+n)$, 2 vectors of size m & n
- We can partition the merges into smaller ones to reduce the running time

Dan Harvey, S. Oregon Univ.
Parallel Merge Strategy

- We saw that if there are $N = m+n$ elements, then the larger of the recursive merges processes $\frac{3}{4}N$ elements.
- Parallelism of merge sort, serial merge: $\Theta(lg\ n)$
- Parallelism of parallel merge: $\Theta(n/lg^2n)$
Parallel Merge Algorithm

```c
void P_Merge(int *C, int *A, int *B, int m, int n) {
    if (m < n) {
        P_Merge(C, B, A, n, m);
    } else if we can’t recurse) {
        Serial(Merge)
    } else {
        int m2 = m/2;
        int j = BinarySearch(A[m2], B, n);
        ... “thread”(P_Merge, C, A, B, m2, j));
        ... thread(P_Merge, C+m2+j, A+m2, B+j, m-m2, nb-j);
    }
}
```
Today’s lecture

• Revisiting Parallel Merge
• More on synchronization
• Performance Characterization
Compare and exchange sorts

- Simplest sort, based on the bubble sort algorithm
- The fundamental operation is compare-exchange
 - \texttt{Compare-exchange(a[j], a[j+1])}
 - Swaps arguments if they are in decreasing order: \((7, 4) \rightarrow (4, 7)\)
 - Satisfies the post-condition that \(a[j] \leq a[j+1]\)
 - Returns \texttt{false} if a swap was made

\begin{verbatim}
for i = 1 to N-1 do
 done = true;
 for j = 0 to i-1 do // Compare-exchange(a[j], a[j+1])
 if (a[i] < a[j]) { a[i] \leftrightarrow a[j];
 done=false; }
 end do
 if (done) break;
end do
\end{verbatim}
Loop carried dependencies

- We cannot parallelize bubble sort owing to the *loop carried dependence* in the inner loop.
- The value of $a[j]$ computed in iteration j depends on the $a[i]$ computed in iterations $0, 1, \ldots, j-1$.

```plaintext
for i = 1 to N-1 do
    done = true;
    for j = 0 to i-1 do
        done = Compare-exchange(a[j], a[j+1])
    end do
    if (done) break;
end do
```
Odd/Even sort

• If we re-order the comparisons we can parallelize the algorithm
 ‣ number the points as even and odd
 ‣ alternate between sorting the odd and even points

• This algorithm parallelizes since there are no loop carried dependences

• All the odd (even) points are decoupled

\[a_{i-1} \quad a_i \quad a_{i+1} \]
Odd/Even sort in action

Unsorted

3 2 3 8 5 6 4 1
2 3 3 8 5 6 1 4
2 3 3 5 8 1 6 4
2 3 3 5 1 8 4 6
2 3 3 1 5 4 8 6
2 3 1 3 4 5 6 8
2 1 3 3 4 5 6 8
1 2 3 3 4 5 6 8
1 2 3 3 4 5 6 8

Phase 1 (odd)
Phase 2 (even)
Phase 3 (odd)
Phase 4 (even)
Phase 5 (odd)
Phase 6 (even)
Phase 7 (odd)
Phase 8 (even)

Introduction to Parallel Computing, Grama et al, 2nd Ed.
The algorithm

for i = 0 to N−1 do
 done = true;
 for j = 0 to N−2 by 2 do // Even
 done &= Compare-exchange(a[j] , a[j+1]);
 end do

for j = 1 to N−2 by 2 do // Odd
 done &= Compare-exchange(a[j] , a[j+1]);
end do
if (done) break;
end do

// Bubble sort
for i = 1 to N−1 do
 done = true;
 for j = 0 to i−1 do
 done = Compare-Exchange(a[j] , a[j+1])
 end do
 if (done) break;
end do
Odd/Even Sort Code

• Where do we need synchronization?

(1) Global bool AllDone;
(2) int OE = lo % 2;
(3) for (s = 0; s < MaxIter; s++) {
 int done = Sweep(Keys, OE, lo, hi); /* Odd phase */
 done &= Sweep(Keys, 1-OE, lo, hi); /* Even phase */
 AllDone &= done;
}

bool Sweep(int *Keys, int OE, int lo, int hi){
 int Hi = hi;
 if (TID == (NT-1))
 Hi --;
 bool myDone = true;
 for (int i = OE+lo; i <= Hi; i+=2) {
 if (Keys[i] > Keys[i+1]){
 Keys[i] ↔ Keys[i+1];
 myDone = false;
 }
 }
 return myDone ;
}
Odd/Even Sort Code – with synchronization

Global bool AllDone;
int OE = lo % 2;
for (s = 0; s < MaxIter; s++) {
 barr.sync();
 if (!TID)
 AllDone = true;
 barr.sync();

 int done = Sweep(Keys, OE, lo, hi); /* Odd phase */
 barr.sync();
done &= Sweep(Keys, 1-OE, lo, hi); /* Even phase */
 mtx.lock();
 AllDone &= done;
 mtx.lock();
barr.sync();

 if (allDone)
 break;
}
Today’s lecture
• Revisiting Parallel Merge
• More on synchronization
• Performance Characterization
Image smoothing algorithm

• Repeat as many times as necessary

\[
\text{for } (i,j) \text{ in } 0: \text{N}-1 \times 0: \text{N}-1 \\
I^{\text{new}} [i,j] = \left(I[i-1,j] + I[i+1,j] + I[i,j-1] + I[i, j+1] \right) / 4 \\
I = I^{\text{new}}
\]

Original 100 iter 1000 iter
Multithreaded Smoother()

Global Change, \(I[:,:,:,:] \), \(I^{new}[:,:,:,:] \)

Local \(mymin = 1 + (TID \times n / NT) \)
 \(mymax = mymin + n / NT - 1 \)

Local \(done = FALSE \)

while (!done) do
 Local \(myChange = 0 \);
 Change = 0;
 update \(I^{new} \) and \(myChange \)
 \(Change += myChange \);
 if (Change < Tolerance) done = TRUE;
 Swap pointers: \(I \leftrightarrow I^{new} \)
end while

update \(I^{new} \) and \(myChange \):
for i = mymin to mymax do
 for j = 1 to n do
 \(I^{new}[i,j] = \ldots \)
 \(myChange += (I^{new}[i,j] - I[i,j])^2 \)
 end for
end for

Is this code correct?
Correctness

Global Change, I[:, :], Inew[:, :]
Local mymin = 1 + ($TID * n/$NT),
 mymax = mymin + n/$NT-1;
Local done = FALSE;
while (!done) do
 Local myChange = 0;
 BARRIER
 Only on thread 0: Change = 0; // PRODUCE
 BARRIER
 update Inew and myChange
 CRITICAL SEC: Change += myChange // PRODUCE + CONSUME
 BARRIER
 if (Change< Tolerance) done = TRUE; // CONSUMER
 Only on thread 0: Swap pointers: I ↔ Inew
end while

Does this code use minimal synchronization?
Building a linear time barrier with locks

Mutex arrival=UNLOCKED, departure=LOCKED; // Shared
int count=0; // Shared

void Barrier()

arrival.lock(); // atomically count the
count++; // waiting threads
if (count <$NT) arrival.unlock();
else departure.unlock(); // last processor
// enables all to go
departure.lock();
count--; // atomically decrement
if (count > 0) departure.unlock();
else arrival.unlock(); // last processor resets state
Today’s lecture

• Revisiting Parallel Merge
• More on synchronization
• Performance Characterization
Measures of Performance

• Why do we measure performance?
• How do we report it?
 ‣ Completion time
 ‣ Processor time product
 Completion time \times # processors
 ‣ Throughput: amount of work that can be accomplished in a given amount of time
 ‣ Relative performance: given a reference architecture or implementation
 AKA Speedup
Parallel Speedup and Efficiency

• How much of an improvement did our parallel algorithm obtain over the serial algorithm?
• Define the *parallel speedup*, $S_P = \frac{T_1}{T_P}$

$$S_P = \frac{\text{Running time of the best serial program on 1 processor}}{\text{Running time of the parallel program on } P \text{ processors}}$$

• T_1 is defined as the running time of the “best serial algorithm”
• In general: *not* the running time of the parallel algorithm on 1 processor
• **Definition:** *Parallel efficiency* $E_P = \frac{S_P}{P}$
Performance questions

- You observe the following running times for a parallel program running a fixed workload N
- Assume that the only losses are due to serial sections
- What is the speedup and efficiency on 8 processors?
- What will the running time be on 4 processors?
- What is the maximum possible speedup on an infinite number of processors?
- What fraction of the total running time on 1 processor corresponds to the serial section?
- What fraction of the total running time on 2 processors corresponds to the serial section?

<table>
<thead>
<tr>
<th>NT</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10000</td>
</tr>
<tr>
<td>2</td>
<td>6000</td>
</tr>
<tr>
<td>8</td>
<td>3000</td>
</tr>
</tbody>
</table>
What can go wrong with speedup?

• Not always an accurate way to compare different algorithms….
• .. or the same algorithm running on different machines
• We might be able to obtain a better running time even if we lower the speedup
• If our goal is performance, the bottom line is running time T_p
Superlinear speedup

• We have a *super-linear* speedup when
 \[E_P > 1 \Rightarrow S_P > P \]

• Is it real?
 ‣ Super-linear speedups are often an artifact of inappropriate measurement technique
 ‣ Where there is a super-linear speedup, a better serial algorithm may be lurking
Scalability

- A computation is **scalable** if performance increases as a “nice function” of the number of processors, e.g. linearly
- In practice scalability can be hard to achieve
 - Serial sections: code that runs on only one processor
 - “Non-productive” work associated with parallel execution, e.g. synchronization
 - Load imbalance: uneven work assignments over the processors
- Some algorithms present intrinsic barriers to scalability leading to alternatives

  ```
  for i=0:n-1  sum = sum + x[i]
  ```
Serial Sections

• Limit scalability
• Let $f =$ the fraction of T_1 that runs serially
• $T_1 = f \times T_1 + (1-f) \times T_1$
• $T_P = f \times T_1 + (1-f) \times T_1 / P$
 Thus $S_P = 1/[f + (1 - f)/p]$
• As $P \rightarrow \infty$, $S_P \rightarrow 1/f$
• This is known as *Amdahl’s Law* (1967)
Amdahl’s law (1967)

- A serial section limits scalability
- Let $f = \text{fraction of } T_1 \text{ that runs serially}$
- *Amdahl’s Law* (1967): As $P \to \infty$, $S_P \to 1/f$
Weak scaling

- Is Amdahl’s law pessimistic?
- Observation: Amdahl’s law assumes that the workload (W) remains fixed
- But parallel computers are used to tackle more ambitious workloads
- If we increase W with P we have weak scaling
 \[f \text{ often decreases with } W \]
- We can continue to enjoy speedups
 - Gustafson’s law [1992]
 - www.scl.ameslab.gov/Publications/Gus/FixedTime/FixedTime.pdf
Isoefficiency

- Consequence of Gustafson’s observation is that we increase N with P
- Kumar: We can maintain constant efficiency so long as we increase N appropriately
- The *isoefficiency* function specifies the growth of N in terms of P
- If N is linear in P, we have a scalable computation
- Problem: the amount of memory per core is shrinking
Time constrained scaling

- Sum N numbers on P processors
- Let N >> P
- Determine the largest problem that can be solved in time T=10^4 time units on 512 processors
- Let time to perform one addition = 1 time unit
- Let $\beta =$ time to add a value inside a critical section
Performance model

• Local additions: N/P - 1
• Reduction: $\beta (\lg P - 1)$
• Since $N \gg P$

 $T(N,P) \sim (N/P) + \beta (\lg P - 1)$

• Determine the largest problem that can be solved in time $T= 10^4$ time units on $P=512$ processors, $\beta = 1000$ time units

• Constraint: $T(512,N) \leq 10^4$

 $\Rightarrow (N/512) + 1000 (\lg 512 - 1) = (N/512) + 1000*(8) \leq 10^4$

 $\Rightarrow N \leq 1\times10^6$ (approximately)
Challenges to measuring performance

- Reproducibility
 - Transient system operating conditions
 - Differing systems or program configuration
- Measurements are imprecise
 - “Heisenberg uncertainty principle:” measurement technique may affect performance
 - Overheads and inaccuracy
- Explain anomalous behavior, but ignore anomalies that are not significant
Complications

• Cost of measuring a full run is prohibitive
 ‣ Ignore startup code if you plan to run for a much longer time in production

• Transient behavior
 ‣ Repeat your measurements
 ‣ “Warm up” the code before collecting measurements
 ‣ Ignore outliers unless their behavior is important to you
 ‣ Average time, maximum time, minimum time?
Measurement collection

• Report the *best* timings
 ► Repeat results ×3 to 5 until at least 2 measures agree to within… 5%, 10%
 ► Report the minimum time
• Also report outliers
• A scatter plot or error bar can be useful
Why do we take the minimum time?
Measurement errors are not distributed symmetrically
Timing collection

• Measures of time
 ► Elapsed, or “wall clock” time
 ► CPU time = system + user time
 ► Overhead, resolution, and quantization effects

• Measurement tools
 ► Can be platform dependent, especially library routines
 ► Unix `time` command does a reasonable job for long-running programs
 ► `gettimeofday()`
Enable others to reproduce your results

• Builds confidence within a community
• Report where you ran, software versions, processor, etc.
 ▶ `uname -a`
 Linux ccom-bang-login.local 2.6.32-358.18.1.el6.x86_64 #1 SMP Wed Aug 28 17:19:38 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux

 ▶ `gcc --version`
 gcc version 4.7.3 (GCC)

 ▶ `/proc/cpuinfo`

 ▶ `/sys/devices/system/cpu/cpu0, cpu1, P-1`
Fin