2013 Fall CSE140L

Digital Systems Laboratory

Lecture #7

by

Dr. Choon Kim
CSE Department, UCSD
LAB#3: Vending Machine Controller Design

• It has many states – Init, zero cents, 5 cents, 10 cents,
• How to move from one state to other state?
• How to detect & handle dispensing?
• How to detect & handle One-dollar bill, credit-card and coin input?
• How to handle Reset?
•
Hint: LAB3 works to be implemented

- VM(Vending Machine) operation:
 - two always blocks (one for state transition, the other for output & next state determination)
 - special cases handling

- Transition between initial state and VM-enabled modes:
 - initial -> VM-enabled
 - VM-enabled -> initial

- Reading inputs(sw0,1,2,5,9, etc.):
 - always(*)…. or, assign....
Mealy vs. Moore FSM

Mealy Machine: \(y(t) = f(x(t), s(t)) \)
Moore Machine: \(y(t) = f(s(t)) \)

\[s(t+1) = g(x(t), s(t)) \]
A circuit which removes one 1(i.e., the first 1) from every string of 1s on the input stream:

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>...... 00000...... => 00000......</td>
<td></td>
</tr>
<tr>
<td>...... 01010...... => 00000......</td>
<td></td>
</tr>
<tr>
<td>...... 00110...... => 00100......</td>
<td></td>
</tr>
<tr>
<td>...... 01110...... => 01100......</td>
<td></td>
</tr>
<tr>
<td>...... 11011...... => 10010......</td>
<td></td>
</tr>
</tbody>
</table>
FSM design example – Moore vs. Mealy

- Remove one 1 from every string of 1s on the input.
Moore FSM Verilog model: (Not necessary working solution)

module reduce (input clk, in,
output reg out);

parameter zero = 2'b00, one1 = 2'b01, two1s = 2'b10;
reg[2:1] state, next_state;

always @(posedge clk) begin
 state = next_state;
end

always @(in, state) begin
 case (state)
 zero: begin
 out = 0;
 if (in) next_state = one1;
 else next_state = zero;
 end
 one1: begin
 out = 0;
 if (in) next_state = two1s;
 else next_state = zero;
 end
 two1s: begin
 out = 1;
 if (in) next_state = two1s;
 else next_state = zero;
 end
 endcase
end
endmodule
Mealy FSM Verilog model:

(Not necessary working solution)

```
module reduce (input clk, in,
               output reg out);

parameter zero = 1'b0, one = 1'b1;
reg state, next_state;

always @(posedge clk) begin
    state = next_state;
end

always @(in, state) begin
    case (state)
        zero: begin
            out = 0;
            if (in) next_state = one;
            else next_state = zero;
        end
        one: begin
            out = 0;
            if (in) begin
                out = 1;
                next_state = one;
            end
            else begin
                out = 0;
                next_state = zero;
            end
        end
    endcase
end
end module
```