Lecture 8: Carrier Sense Multiple Access

CSE 123: Computer Networks
Alex C. Snoeren

HW 2 due next Wednesday
Lecture 8 Overview

- Methods to share physical media: **multiple access**
 - Random access

- Channelizing mechanisms

- Contention-based mechanisms
 - Aloha
 - Ethernet
Partitioning Visualization

FDMA

TDMA

CDMA

Courtesy Takashi Inoue
Problem w/Channel partitioning

- Not terribly well suited for random access usage
 - Why?

- Instead, design schemes for more common situations
 - Not all nodes want to send all the time
 - Don’t have a fixed number of nodes

- Potentially higher throughput for transmissions
 - Active nodes get full channel bandwidth
Aloha

- Designed in 1970 to support wireless data connectivity
 - Between Hawaiian Islands—rough!

- Goal: distributed access control (no central arbitrator)
 - Over a shared broadcast channel

- Aloha protocol in a nutshell:
 - When you have data **send it**
 - If data doesn’t get through (receiver sends acknowledgement) then **retransmit after a random delay**
 - Why not a fixed delay?
Collisions

- Frame sent at t_0 collides with frames sent in $[t_0-1, t_0+1]$
 - Assuming unit-length frames
 - Ignores propagation delay
Slotted Aloha

- Time is divided into equal size slots (frame size)
- Host wanting to transmit starts at start of next slot
 - Retransmit like w/Aloha, but quantize to nearest next slot
- Requires time synchronization between hosts

Success (S), Collision (C), Empty (E) slots
Q: What is max fraction slots successful?
A: Suppose n stations have packets to send
 - Each transmits in slot with probability p
 - $\text{Prob[successful transmission]}, S, \text{ is:}$

 $$S = p (1-p)^{n-1}$$

 - any of n nodes:

 $$S = \text{Prob[one transmits]} = np(1-p)^{n-1}$$
 (optimal p as $n \to \infty = 1/n$)
 $$= 1/e = .37$$

At best: channel used for useful transmissions 37% of time!
Carrier Sense (CSMA)

- Aloha transmits even if another host is transmitting
 - Thus guaranteeing a collision

- Instead, listen *first* to make sure channel is idle
 - Useful only if channel is frequently idle
 - Why?

- How long to be confident channel is idle?
 - Depends on maximum propagation delay
 - Small (<<1 frame length) for LANs
 - Large (>>1 frame length) for satellites
Retransmission Options

- **non-persistent CSMA**
 - Give up, or send after some random delay
 - Problem: may incur larger delay when channel is idle

- **1-persistent CSMA**
 - Send as soon as channel is idle
 - Problem: blocked senders all try to send at once

- **P-persistent CSMA**
 - If idle, send packet with probability p; repeat
 - Make sure $(p \times n) < 1$
Even with CSMA there can still be collisions. Why?

If nodes can detect collisions, abort! *(CSMA/CD)*
- Requires a minimum frame size ("acquiring the medium")
- *B* must continue sending ("jam") until *A* detects collision

Requires a full duplex channel
- Wireless is typically half duplex; need an alternative
Collision Detection

- How can A know that a collision has taken place?
 - Worst case:
 » Latency between nodes A & B is d
 » A sends a message at time t and B sends a message at t + d – epsilon (just before receiving A’s message)
 - B knows there is a collision, but not A... B must keep transmitting so A knows that its packet has collided
 - How long? 2 * d

- IEEE 802.3 Ethernet specifies max value of 2d to be 51.2us
 - This relates to maximum distance of 2500m between hosts
 - At 10Mbps it takes 0.1us to transmit one bit so 512 bits take 51.2us to send
 - So, Ethernet frames must be at least 64B (512 bits) long
 » Padding is used if data is too small

- Send jamming signal to insure all hosts see collision
 - 48 bit signal
Ethernet

- First *local area network* (LAN)
 - Developed in early ’70s by Metcalfe and Boggs at PARC
 - Originally 1Mbps, now supports 10Mbps, 100Mbps, 1Gbps and 10Gbps flavors (40/100G in development)

- Currently *the* dominant LAN technology
 - Becoming the dominant WAN technology
Classic Ethernet

- IEEE 802.3 standard wired LAN (modified 1-persistent CSMA/CD)
- Classic Ethernet: 10 Mbps over coaxial cable
 - All nodes share same wire
 - Max length 2.5km, max between stations 500m

- Framing
 - Preamble, 32-bit CRC, variable length data
 - Unique 48-bit address per host (bcast & multicast addrs too)

| Preamble (8) | Source (6) | Dest (6) | Len (2) | Payload (var) | Pad (var) | CRC (4) |
Ethernet improvements

- Problems with random delay with fixed mean
 - Few senders = unnecessary delay
 - Many senders = unnecessary collisions

- Binary exponential back-off balances delay w/load
 - First collision: wait 0 or 1 min frame times at random, retry
 - Second time: wait 0, 1, 2, or 3 times
 - Nth time (n≤10): wait 0, 1, …, 2^n-1 times
 - Max wait 1023 frames; give up after 16 attempts
Capture Effect

- Randomized access scheme is not fair

- Suppose stations A and B always have data to send
 - They *will* collide at some time
 - Both pick random number of “slots” (0, 1) to wait
 - Suppose A wins and sends
 - Next time they collide, B’s chance of winning is halved
 - B will select from 0, 1, 2, 3 due to exponential back-off

- A keeps winning: said to have *captured* the channel
Ethernet Performance

- Much better than Aloha or CSMA in practice

- Source of protocol inefficiency: collisions
 - More efficient to send larger frames
 - Acquire the medium and send lots of data
 - Less efficient if
 - More hosts – more collisions needed to identify single sender
 - Smaller packet sizes – more frequent arbitration
 - Longer links – collisions take longer to observe, more wasted bandwidth
For Next Time

- Read 3-3.2 in P&D
- Keep going on the project…
- Really, have a great weekend!