Lecture 13: Naming

CSE 123: Computer Networks
Alex C. Snoeren

Project 1 due Friday

Some material courtesy Mike Freedman
Lecture 13 Overview

- Packet forwarding example
- User-friendly names (DNS)
- Discovering addresses (DHCP/ARP)
- End-to-end lookup and forwarding example
Forwarding example

- Packet to 10.1.1.6 arrives
- Path is R2 – R1 – H1 – H2
Forwarding example (2)

- Packet to 10.1.1.6
- Matches 10.1.0.0/23

Forwarding table at R2

<table>
<thead>
<tr>
<th>Destination</th>
<th>Next Hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>127.0.0.1</td>
<td>loopback</td>
</tr>
<tr>
<td>Default or 0/0</td>
<td>10.1.16.1</td>
</tr>
<tr>
<td>10.1.8.0/24</td>
<td>interface1</td>
</tr>
<tr>
<td>10.1.2.0/23</td>
<td>interface2</td>
</tr>
<tr>
<td>10.1.0.0/23</td>
<td>10.1.2.2</td>
</tr>
<tr>
<td>10.1.16.0/24</td>
<td>interface3</td>
</tr>
</tbody>
</table>
Forwarding example (3)

- Packet to 10.1.1.6
- Matches 10.1.1.4/30
 - Longest prefix match

Routing table at R1

<table>
<thead>
<tr>
<th>Destination</th>
<th>Next Hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>127.0.0.1</td>
<td>loopback</td>
</tr>
<tr>
<td>Default or 0/0</td>
<td>10.1.2.1</td>
</tr>
<tr>
<td>10.1.0.0/24</td>
<td>interface1</td>
</tr>
<tr>
<td>10.1.1.0/24</td>
<td>interface2</td>
</tr>
<tr>
<td>10.1.2.0/23</td>
<td>interface3</td>
</tr>
<tr>
<td>10.1.1.4/30</td>
<td>10.1.1.7</td>
</tr>
</tbody>
</table>

CSE 123 – Lecture 13: Naming
Forwarding example (4)

- Packet to 10.1.1.6
- Direct route
 - Longest prefix match

Routing table at H1

<table>
<thead>
<tr>
<th>Destination</th>
<th>Next Hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>127.0.0.1</td>
<td>loopback</td>
</tr>
<tr>
<td>Default or 0/0</td>
<td>10.1.1.1</td>
</tr>
<tr>
<td>10.1.1.0/24</td>
<td>interface1</td>
</tr>
<tr>
<td>10.1.1.4/30</td>
<td>interface2</td>
</tr>
</tbody>
</table>

CSE 123 – Lecture 13: Naming
Layers of Identifiers

- **Host name** (e.g., www.ucsd.edu)
 - Used by *humans* to specify host of interest
 - Unique, selected by host administrator
 - Hierarchical, variable-length string of alphanumeric characters

- **IP address** (e.g., 128.54.70.238)
 - Used by *routers* to forward packets
 - Unique, topologically meaningful locator
 - Hierarchical namespace of 32 bits

- **MAC address** (e.g., 58:B0:35:F2:3C:D9)
 - Used by *network adaptors* to identify interesting frames
 - Unique, hard-coded identifier burned into network adaptor
 - Flat name space (of 48 bits in Ethernet)
Host name: www.ucsd.edu
- **Domain**: registrar for each top-level domain (e.g., .edu)
- **Host name**: local administrator assigns to each host

IP addresses: 128.54.70.238
- **Prefixes**: ICANN, regional Internet registries, and ISPs
- **Hosts**: static configuration, or dynamic using DHCP

MAC addresses: 58:B0:35:F2:3C:D9
- **OIDs**: assigned to vendors by the IEEE
- **Adapters**: assigned by the vendor from its block
Mapping Between Identifiers

- Domain Name System (DNS)
 - Given a host name, provide the IP address
 - Given an IP address, provide the host name

- Address Resolution Protocol (ARP)
 - Given an IP address, provide the MAC address
 - To enable communication within the Local Area Network

- Dynamic Host Configuration Protocol (DHCP)
 - Automates host boot-up process
 - Given a MAC address, assign a unique IP address
 - … and tell host other stuff about the Local Area Network
Domain Name System (DNS)

- Distributed administrative control
 - Hierarchical name space divided into zones
 - Distributed over a collection of DNS servers

- Hierarchy of DNS servers
 - Root servers
 - Top-level domain (TLD) servers
 - Authoritative DNS servers

- Performing the translations
 - Local DNS servers
 - Resolver software
DNS: Distributed Database

Unnamed root

- com
- edu
- ... (generic domains)
- org
- ac
- ... (country domains)
- uk
- zw

- bar
 - west
 - east
 - foo
 - my
 - my.east.bar.edu

- ac
 - cam
 - usr
 - usr.cam.ac.uk

CSE 123 – Lecture 13: Naming
DNS Root Servers

- 13 root servers (see http://www.root-servers.org/)
 - Labeled A through M

 A Verisign, Dulles, VA
 C Cogent, Herndon, VA (also Los Angeles)
 D U Maryland College Park, MD
 G US DoD Vienna, VA
 H ARL Aberdeen, MD
 J Verisign, (11 locations)
 K RIPE London (+ Amsterdam, Frankfurt)
 I Autonomica, Stockholm
 (plus 3 other locations)
 E NASA Mt View, CA
 F Internet Software C. Palo Alto, CA (and 17 other locations)
 B USC-ISI Marina del Rey, CA
 L ICANN Los Angeles, CA
 m WIDE Tokyo

CSE 123 – Lecture 13: Naming
Using DNS

- Local DNS server ("default name server")
 - Usually near the end hosts who use it
 - Local hosts configured with local server (e.g., /etc/resolv.conf) or learn the server via DHCP

- Client application
 - Extract server name (e.g., from the URL)
 - Do `gethostbyname()` to trigger resolver code

- Server application
 - Extract client IP address from socket
 - Optional `gethostbyaddr()` to translate into name
Host at cis.poly.edu wants IP address for gaia.cs.umass.edu!

cis.poly.edu

requesting host
dns.poly.edu

local DNS server

root DNS server

tld.cs.umass.edu

TLD DNS server

authoritative DNS server

dns.cs.umass.edu

CSE 123 – Lecture 13: Naming
Reliability

- DNS servers are replicated
 - Name service available if at least one replica is up
 - Queries can be load balanced between replicas

- UDP used for queries
 - Need reliability: must implement this on top of UDP
 - Try alternate servers on timeout
 - Exponential backoff when retrying same server

- Cache responses to decrease load
 - Both at end hosts and local servers
Whence come IP Addresses?

- You already have a bunch from the days when you called Jon Postel and asked for them (e.g. BBN)

- You get them from another provider
 - E.g. buy service from Sprint and get a /24 from one of their address blocks

- You get one directly from a routing registry
 - ARIN: North America, APNIC (Asia Pacific), RIPE (Europe), LACNIC (Latin America), etc.
 - Registries get address from IANA (Internet Assigned Numbers Authority)
How Do You And I Get One?

- Well from your provider!

- But how do you know what it is?

- Manual configuration
 - They tell you and you type that number into your computer (along with the default gateway, DNS server, etc.)

- Automated configuration
 - Dynamic Host Resolution Protocol (DHCP)
Bootstrapping Problem

- Host doesn’t have an IP address yet
 - So, host doesn’t know what source address to use

- Host doesn’t know who to ask for an IP address
 - So, host doesn’t know what destination address to use

- Solution: shout to discover a server who can help
 - Install a special server on the LAN to answer distress calls

DHCP server

CSE 123 – Lecture 13: Naming
DHCP

- Broadcast-based LAN protocol algorithm
 - Host broadcasts “DHCP discover” on LAN (e.g. Ethernet broadcast)
 - DHCP server responds with “DHCP offer” message
 - Host requests IP address: “DHCP request” message
 - DHCP server sends address: “DHCP ack” message w/IP address

- Easy to have fewer addresses than hosts (e.g. UCSD wireless) and to renumber network (use new addresses)

- What if host goes away (how to get address back?)
 - Address is a “lease” not a “grant”, has a timeout
 - Host may have different IP addresses at different times?
Address Resolution Protocol

- Every node maintains an ARP table
 - (IP address, MAC address) pair
- Consult the table when sending a packet
 - Map destination IP address to MAC address
 - Encapsulate and transmit the data packet
- What if the IP address is not in the table?
 - Broadcast: “Who has IP address x.x.x.x?”
 - Sender caches the result in its ARP table
Summary

- Domain Name System
 - Distributed, hierarchical database
 - Distributed collection of servers
 - Caching to improve performance

- IP to MAC Address mapping
 - Dynamic Host Configuration Protocol (DHCP)
 - Address Resolution Protocol (ARP)
For Next Time

- Read 3.4 in P&D
- Finish up Project 1!
 - Lose a letter grade for each day late.