Lecture 12: Aggregation

CSE 123: Computer Networks
Alex C. Snoeren

Project 1 due Friday
Lecture 12 Overview

- Finish up Route Aggregation
 - CIDR
Subnet Addresses

- Every (sub)network has an address and a **netmask**
 - Netmask tells which bits of the network address is important
 - Convention suggests it be a proper prefix

- Netmask written as an all-ones IP address
 - E.g., Class B netmask is 255.255.0.0
 - Sometimes expressed in terms of number of 1s, e.g., /16

- Need to size subnet appropriately for each LAN
 - Only have remaining bits to specify host addresses
IP Address Problem (1991)

- Address space depletion
 - In danger of running out of classes A and B

- Why?
 - Class C too small for most organizations (only ~250 addresses)
 - Very few class A – very careful about giving them out (who has 16M hosts anyway?)
 - Class B – greatest problem
Classless Inter-Domain Routing (1993)

- Networks described by variable-length prefix and length
- Allows arbitrary allocation between network and host address

- e.g. 10.95.1.2 contained within 10.0.0.0/8:
 - 10.0.0.0 is network and remainder (95.1.2) is host

- Pro: Finer grained allocation; aggregation
- Con: More expensive lookup: longest prefix match
Route Aggregation

- Combine adjacent networks in forwarding tables
 - Helps keep forwarding table size down

- Send me anything with addresses beginning 200.23.16.0/20
- Send me anything with addresses beginning 199.31.0.0/16

Organization 0
- 200.23.16.0/23

Organization 1
- 200.23.18.0/23

Organization 2
- 200.23.20.0/23

Organization 7
- 200.23.30.0/23

Fly-By-Night-ISP

ISPs-R-Us

Internet
Most Specific Route

- But what if address range is not contiguous?

- Organization 0
 - 200.23.16.0/23

- Organization 2
 - 200.23.20.0/23

- Organization 7
 - 200.23.30.0/23

- Organization 1
 - 200.23.18.0/23

Fly-By-Night-ISP

"Send me anything with addresses beginning 200.23.16.0/20"

ISP-R-U's

"Send me anything with addresses beginning 199.31.0.0/16 or 200.23.18.0/23"

Internet

CSE 123 – Lecture 12: Aggregation
Longest Matching Prefix

- Forwarding table contains many prefix/length tuples
 - They *need not* be disjoint!
 - E.g. 200.23.16.0/20 and 200.23.18.0/23
 - What to do if a packet arrives for destination 200.23.18.1?
 - Need to find the longest prefix in the table which matches it (200.23.18.0/23)

- Not a simple table, requires multiple memory lookups
 - Lots and lots of research done on this problem
 - Our own George Varghese is the master of this domain
(Practical Algorithm to Retrieve Information Coded In Alphanumeric)

- Straightforward way to look up LMP
 - Arrange route entries into a series of bit tests
 - Worst case = 32 bit tests
 - Problem: memory speed is a bottleneck
For Next Time

- Finish up Project 1!
 - Lose a letter grade for each day late.