1 The Agnostic PAC Model

Recall that one of the constraints of the PAC model is that the data distribution D has to be separable with respect to the hypothesis class H. The Agnostic PAC model removes this restriction. That is, there no longer exists a $h \in H$ with $\text{err}_D(h) = 0$.

Definition 1 (Agnostic PAC Model) A hypothesis class H is said to be Agnostic PAC-Learnable if there is an algorithm A with the following property. For all ϵ, δ, $0 \leq \epsilon, \delta \leq \frac{1}{2}$, all distributions D over $X \times Y$, if A is given ϵ, δ and $m_H(\epsilon, \delta)$ examples from D, then with probability $\geq 1 - \delta$, it outputs a $h \in H$ with:

$$\text{err}_D(h) \leq \epsilon + \inf_{h^* \in H} \text{err}_D(h^*)$$

The learning procedure in the PAC model is to find a hypothesis in H which is consistent with all the input examples. In the Agnostic PAC model, there is no such hypothesis. Instead, a common learning procedure is to find a hypothesis h that minimizes the empirical error, or the error on the training examples.

Suppose that given a set of samples S drawn from a data distribution D, h^* minimizes the empirical error $\text{err}(h, S)$ while h_{opt} minimizes the true error $\text{err}_D(h)$.

$$h^* = \arg \min_{h \in H} \text{err}(h, S) \quad \text{and} \quad h_{opt} = \arg \min_{h \in H} \text{err}_D(h).$$

Our goal is to find the condition under which $\text{err}_D(h^*) \leq \epsilon + \text{err}_D(h_{opt})$.

Lemma 1 For a fixed $h \in H$ and m samples S drawn from D,

$$\mathbb{P}\left(\left|\text{err}_D(h) - \text{err}(h, S)\right| \geq \epsilon\right) \leq 2e^{-me^2}.$$

Proof: Let $S = \{(x_1, y_1), \ldots, (x_m, y_m)\}$ be the sample set, and let $Z_i = 1(h(x_i) \neq y_i)$ for any $h \in H$. Then,

$$\mathbb{E}[Z_i] = \text{err}_D(h) \quad \text{and} \quad \text{err}(h, S) = \frac{1}{m} \sum_i Z_i.$$

The bound then follows directly from applying Hoeffding’s Inequality. □

Theorem 1 For a finite hypothesis class $|H|$,

$$\mathbb{P}\left(\left|\text{err}_D(h^*) - \text{err}_D(h_{opt})\right| \geq \epsilon\right) \leq 2|H|e^{-me^2/4}.$$
Proof: First observe that $\text{err}_D(h^*) - \text{err}_D(h_{\text{opt}})$ can be split into three terms

$$
\text{err}_D(h^*) - \text{err}_D(h_{\text{opt}}) = \left(\text{err}_D(h^*) - \text{err}(h^*, S) \right) + \left(\text{err}(h^*, S) - \text{err}(h_{\text{opt}}, S) \right) + \left(\text{err}(h_{\text{opt}}, S) - \text{err}(h_{\text{opt}}) \right).
$$

The middle term, $(\text{err}(h^*, S) - \text{err}_D(h_{\text{opt}})) \leq 0$, because h^* minimizes $\text{err}(h, S)$. Thus

$$
\text{err}_D(h^*) - \text{err}_D(h_{\text{opt}}) \leq 2 \sup_{h \in \mathcal{H}} |\text{err}(h) - \text{err}(h, S)|.
$$

The theorem then results from combining this with the previous lemma, and applying an Union Bound over all $h \in \mathcal{H}$:

$$
P \left(\sup_{h \in \mathcal{H}} |\text{err}_D(h) - \text{err}(h, S)| \geq \frac{\varepsilon}{2} \right) \leq \sum_{h \in \mathcal{H}} P \left(|\text{err}_D(h) - \text{err}(h, S)| \geq \frac{\varepsilon}{2} \right) \leq 2|\mathcal{H}|e^{-m\varepsilon^2/4}.
$$

\[\square\]

For failure probability $\leq \delta$, the bound in Theorem 1 can be re-written as:

$$
\varepsilon(m) \leq 2 \cdot \sqrt{\frac{\ln(2|\mathcal{H}|/\delta)}{m}} \quad (1)
$$

Contrast this with the analogous bound for PAC learning:

$$
\varepsilon(m) \leq \frac{\ln(|\mathcal{H}|/\delta)}{m} \quad (2)
$$

Thus, Agnostic PAC learning is statistically harder than PAC learning. Usually it is also computationally harder as well.

2 Bounds for Infinite Hypothesis Classes

The generalization bounds we have proved so far apply to finite hypothesis classes, because the union bound step breaks down when \mathcal{H} is infinite. We will now see how we can exploit the structure of a hypothesis class to show generalization bounds which apply infinite classes as well.

What kind of structure can we exploit? In cases where a hypothesis class is infinite, many different hypotheses can produce the same labeling so often the set of meaningful hypotheses is much smaller. We will measure the complexity a hypothesis class by the richness of the labelings it can produce.

This notion can be made formal by the **VC dimension**. Assuming binary classification, that is $\mathcal{Y} = \{0, 1\}$, for a hypothesis class \mathcal{H}, and a set of examples $S = \{x_1, \ldots, x_m\}$, we define:

$$
\Pi_{\mathcal{H}}(S) = \{(h(x_1), \ldots, h(x_m)) \mid h \in \mathcal{H}\}.
$$

Here \mathcal{H} may be infinite but $\Pi_{\mathcal{H}}(S)$ has at most 2^m possible elements, and under certain conditions on \mathcal{H}, $\Pi_{\mathcal{H}}(S)$ may have even less.

Definition 1 We say a hypothesis class \mathcal{H} shatters S if $\Pi_{\mathcal{H}}(S) = \{0, 1\}^m$.

Definition 2 The **VC dimension** of \mathcal{H} is the size of the largest set of examples that can be shattered by \mathcal{H}. The VC dimension is infinite if for all m, there is a set of m examples shattered by \mathcal{H}.
Example 1: Bidirectional Thresholds. Let \(\mathcal{X} = \mathbb{R} \) with \(\mathcal{H} = \mathbb{R} \times \{+,-\} \). Here each example is a point on a line, and has a binary label. Each hypothesis in \(\mathcal{H} \) corresponds to a threshold \(t \) and a sign (+ or −), and can be written as \(h_{\{t,+\}} \) or \(h_{\{t,-\}} \), defined as follows:

\[
h_{\{t,+\}}(x) = \begin{cases} +, & x \geq t \\ - , & \text{otherwise} \end{cases}
\]

In other words, \(h_{\{t,+\}} \) labels everything to the right of \(t \) as + and everything else as −, and \(h_{\{t,-\}} \) is defined correspondingly. Since \(t \) can take on any real value, \(\mathcal{H} \) is infinite.

Note that on any fixed set of points \(S = \{x_1,x_2,\ldots,x_m\} \) of size \(m \), \(|\Pi_\mathcal{H}(S)| \leq 2m \). Consider the following \(m+1 \) intervals:

\[
(-\infty,x_1),(x_1,x_2),(x_2,x_3),\ldots,(x_{m-2},x_{m-1}),(x_{m-1},x_m),(x_m,\infty)
\]

(3)

Two thresholds \(t \) and \(t' \) placed in the same interval and with the same sign would result in the same labeling; moreover the pairs \(h_{\{-\infty,+\}} \) and \(h_{\{+\infty,-\}} \) as well as \(h_{\{-\infty,-\}} \) and \(h_{\{+\infty,+\}} \) result in the same labelling. Thus there are \(\leq 2m \) distinct labelings.

What is the VC dimension of this class? Thresholds can produce all possible labels on a set of two distinct points. However on a sequence of three points, they cannot label the sequence +, −, + or −, +, −. Thus no sets of size 3 are shattered, and the VC dimension of this hypothesis class is 2.

Example 2: Intervals on the line. Let \(\mathcal{X} = \mathbb{R} \) with \(\mathcal{H} = \mathbb{R} \times \mathbb{R} \). Samples again label points on the line and each hypothesis corresponds to two real values defining an interval; points inside the interval are labeled + and everything else is labeled −. Formally, for each interval \([a,b]\), \(h_{[a,b]}(x) = + \) for \(a \leq x \leq b \), and − otherwise.

For any set \(S = \{x_1,\ldots,x_m\} \) of \(m \) points, \(|\Pi_\mathcal{H}(S)| = \binom{m+1}{2} + 1 \). Any two hypotheses \(h_{[a,b]} \) and \(h_{[a',b']} \) where \(a \) and \(a' \) (or \(b \) and \(b' \)) lie in the same interval in the sequence in Equation 3 produce the same labeling of \(S \). Thus there are \(\leq \binom{m+1}{2} \) distinct labelings of \(S \) where not all data points are labeled −, corresponding to hypotheses \(h_{[a,b]} \) where \(a \) and \(b \) lie in different intervals in the sequence in Equation 3. Finally, we add the all − labelling which is achieved by \(h_{[a,a]} \) for any \(a \).

What is the VC dimension of intervals? Intervals can label any sequence of two distinct points but cannot label a sequence of three distinct points +, −, +. Thus the VC dimension of \(\mathcal{H} \) is 2. If \(\mathcal{H} \) is expanded to allow bidirectional intervals, the previous sequence could then be labeled but sequences such as +, −, +, − could not be, giving a VC dimension of 3.

Example 3: Linear Classifiers. Let \(\mathcal{X} = \mathbb{R}^2 \) with \(\mathcal{H} = \{\text{linear classifiers over } \mathbb{R}^2\} \). Consider a set \(S \) of 3 points in general position. Figure 2 shows that all possible labelings of \(S \) are achievable by \(\mathcal{H} \). Thus there exists a set of 3 points that can be shattered by \(\mathcal{H} \).

On the other hand, it can be shown that no set of 4 distinct points on the plane can be shattered by \(\mathcal{H} \). Thus the VC dimension of \(\mathcal{H} \) is 3. Note that a set of 3 collinear points on the plane cannot be shattered by \(\mathcal{H} \) because the labeling +, −, + is not achievable by \(\mathcal{H} \); but this does not change the VC dimension calculation because there is a set of size 3 that can be shattered.

In general, the VC dimension for the hypothesis class of linear classifiers in \(\mathbb{R}^d \) is \(d + 1 \).

Theorem 2 For any finite hypothesis class \(\mathcal{H} \), \(\text{VC-dim}(\mathcal{H}) \leq \log_2 |\mathcal{H}| \).

Proof: If \(\mathcal{H} \) shatters \(S \) then \(|\mathcal{H}| \) is at least \(2^m \) meaning the VC dimension can be at most \(\log_2 |\mathcal{H}| \).

□
Figure 1: All possible labelings of S are achievable by the class of linear classifiers on the plane.

Example 3: Infinite VC dimension. Let $X = \mathbb{R}$ and $H = \mathbb{R}$. For $w \in \mathbb{R}$ a hypothesis is given by

$$h_w(x) = \text{sign}(\sin(wx)).$$

For all m, the set $S = \{2^1, 2^2, \ldots, 2^m\}$ is shattered by h. To see this, let $w = -\pi \ast (0.y_1y_2 \ldots y_m)$ be a decimal binary encoding of a set of desired labels, converting -1 to 0. Essentially each x_i bit shifts w to produce the desired label as a result of the fact that $\text{sign}(\sin(\pi z)) = (-1)^{\lfloor z \rfloor}$. Thus the VC dimension of this hypothesis class is infinite.

2.1 Sauer’s Lemma

Sauer’s Lemma formally relates the VC dimension of a hypothesis class H and the size of $\Pi_H(S)$ for any set S of examples of size m.

Lemma 2 If the VC dimension for a hypothesis class H is d then for a set of m samples S, where $m \geq d$,

$$|\Pi_H(S)| \leq \sum_{i=0}^{d} \binom{m}{i} \leq \left(\frac{em}{d}\right)^d \in O(m^d).$$

Proof: We will prove this by induction over m and d. Let $\Phi_d(m) = \sum_{i=0}^{d} \binom{m}{i}$. The two base cases:

- When $m = 0$, S is the empty set so $|\Pi_H(S)| \leq 1$ and $\Phi_d(0) = 1$.
- When $d = 0$, H cannot even shatter one point so only one labeling is possible and $|\Pi_H(S)| = \Phi_0(m) = 1$.

Then, assuming Sauer’s Lemma holds for $(m - 1, d)$ and $(m - 1, d - 1)$, we wish to show $|\Pi_H(S)| \leq \Phi_d(m)$.

Let $S = \{x_1, \ldots, x_m\}$. In what follows, we restrict ourselves to the sample space S. Restriction to S can only decrease the VC dimension of H, so it does not affect the theorem statement.
We start by splitting $|\Pi_H(S)|$ through introducing two new hypothesis classes H_1 and H_2 defined on samples $S' = \{x_1, \ldots, x_{m-1}\}$. H_1 is identical to H but ignores the last example x_m while H_2 consists of only those hypotheses where duplicates differing only on x_m would occur in H. A sample split could be as follows:

<table>
<thead>
<tr>
<th>H</th>
<th>H_1</th>
<th>H_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>x_2</td>
<td>x_3</td>
</tr>
<tr>
<td>x_4</td>
<td>x_5</td>
<td></td>
</tr>
</tbody>
</table>

h_1 0 1 1 0 0 \rightarrow 0 1 1 0
h_2 0 1 1 0 1 \rightarrow 0 1 1 0
h_3 0 1 1 1 0 \rightarrow 0 1 1 1
h_4 1 0 0 1 0 \rightarrow 1 0 0 1
h_5 1 0 0 1 1 \rightarrow 1 0 0 1
h_6 1 1 0 0 1 \rightarrow 1 1 0 0

If a set is shattered by H_1, it is also shattered by H. Thus

$$\text{VC-dim}(H_1) \leq \text{VC-dim}(H) = d.$$

If S' is shattered by H_2, then $S' \cup \{x_m\}$ is shattered by H implying

$$\text{VC-dim}(H_1) \leq \text{VC-dim}(H) - 1 = d - 1.$$

With this split, $|\Pi_H(S)| = |\Pi_{H_1}(S')| + |\Pi_{H_2}(S')|$. Let ℓ be any labeling of $S \setminus \{x_m\}$ achievable by H; if $(\ell, +)$ and $(\ell, -)$ both occur in $\Pi_H(S)$, then ℓ occurs in both H_1 and H_2; otherwise, ℓ occurs only in H_1.

So by the inductive hypothesis,

$$|\Pi_H(S)| \leq \Phi_d(m - 1) + \Phi_{d-1}(m - 1) = \sum_{i=0}^{d} \left(\begin{array}{c} m - 1 \\ i \end{array}\right) + \sum_{i=0}^{d-1} \left(\begin{array}{c} m - 1 \\ i \end{array}\right) = \sum_{i=0}^{d-1} \left(\begin{array}{c} m - 1 \\ i \end{array}\right) + \sum_{i=0}^{d} \left(\begin{array}{c} m - 1 \\ i \end{array}\right) = \Phi_d(m).$$

Finally, from Sterling’s approximation, for when $m \geq d$,

$$\Phi_d(m) = \sum_{i=0}^{d} \left(\begin{array}{c} m \\ i \end{array}\right) \leq \left(\frac{m}{d}\right)^d \sum_{i=0}^{d} \left(\begin{array}{c} d \\ m \end{array}\right)^i \left(\frac{d}{m}\right)^i = \left(\frac{m}{d}\right)^d \left(1 + \frac{d}{m}\right)^m \leq \left(\frac{em}{d}\right)^d.$$

\Box