Instructions

- For your proofs, you may use any result covered in class, and its analysis, but please cite the result that you use.
- Each problem is worth 10 points.
- The assignment will be graded on clarity and correctness. If your arguments are not clear and have holes in them, I will assume that they are wrong.

Problem 1: PAC Learning

You are given an algorithm A for learning a hypothesis class H. Given a parameter $0 < \epsilon < 1$ and $m(\epsilon)$ i.i.d samples from a separable data distribution D, A produces a $h \in H$ such that $err_D(h) \leq \epsilon$ with probability at least $\frac{1}{2}$ over its input.

Given A and a procedure EX which when called outputs a fresh independent labeled example from a separable distribution D, how will you design a PAC-learning algorithm for H? Describe your procedure, and prove that it PAC-learns H. [Hint: You may need to run A multiple times.]

Problem 2: VC Dimension

In learning equivalence relations over an universe U with n elements, the sample space $X = U \times U$. A hypothesis h_{Π} corresponds to a disjoint partition $\Pi = \{U_1, \ldots, U_k\}$ of U into k parts; for u and v in U, $h_{\Pi}((u, v)) = 1$ if and only if u and v belong to some U_j in Π. The hypothesis class H is the set of all such hypotheses.

Show that the VC dimension of H is $\Theta(n)$ – that is, there exist constants c_1 and c_2 such that $c_1 n \leq VC(H) \leq c_2 n$.

Problem 3: VC Dimension

Let $X = \mathbb{R}^2$, and let H be the hypothesis class of all convex sets on the plane. In other words, each $h_K \in H$ corresponds to a convex set K, such that $h_K(x) = 1$ if x is inside or on the boundary of K and 0 otherwise. Show that H has infinite VC dimension.