SUV Color Space & Filtering

Computer Vision I
CSE252A
Lecture 11

Announcement
- HW2 extended to Tuesday

Blob Tracking for Robot Control

Motivation: Lambertian Algorithm Applied to Non-Lambertian Surface: Photometric Stereo

Dichromatic Reflection Model

Color depends on light source color and diffuse color

Transparent Film

Color of light source
Dichromatic Reflection Model

- Image formation: Color Channel \(k \)

\[
I_k = (D_k f_d + S_k f_s(\theta)) \mathbf{n} \cdot \mathbf{l}
\]

- Data-dependent SUV Color Space

\[
I_{SUV} = [R] I_{RGB}
\]

- Example

- Properties of SUV

- Image formation: Color Channel \(k \)

Where \(f_d \) and \(f_s \) are the diffuse and specular BRDF.

Image color lies in span of diffuse color \(D \) and specular color \(S \).

First row of \(R \) is specular color \(S \). Other rows are orthogonal to \(S \).

\(U, V \) spans a plane orthogonal to \(S \).

- Shading information is preserved in \(u \) and \(v \) channels.

\[
I_U = r^2 D f_d \mathbf{n} \cdot \mathbf{l}
\]

\[
I_V = r^3 D f_d \mathbf{n} \cdot \mathbf{l}
\]
Multi-channel Photometric Stereo

\[J = [t_0, t_1] \]

\(J^k \): 2-channel color vector under the \(k \)-th light source.

\(\rho \): 2-channel UV albedo.

\[J^k = [\rho_0^k, \rho_1^k]^T = (\hat{n} \cdot \hat{P}) \rho. \]

Shading vector \(\hat{P} = \begin{bmatrix} f_1^k & f_2^k & f_3^k \end{bmatrix}^T = \begin{bmatrix} \hat{P}_1^k \hat{P}_2^k \hat{P}_3^k \end{bmatrix} \hat{n} \)

Intensity matrix \([J] = \begin{bmatrix} I_1^k & I_2^k & I_3^k \\ I_4^k & I_5^k & I_6^k \\ I_7^k & I_8^k & I_9^k \end{bmatrix} = \hat{P} \rho^T. \)

The least squares estimate of the shading vector \(P \) is the principal eigenvector of \([J] P = \hat{P} \rho^T \hat{n} \).

Qualitative Results

Quantitative Results

What is image filtering?

- Modify the pixels in an image based on some function of a local neighborhood of the pixels.

\[
\begin{array}{c|c|c}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{array}
\quad
\begin{array}{c|c|c}
5 & 5 & 5 \\
5 & 5 & 5 \\
5 & 5 & 5 \\
\end{array}
\]

Local image data

Modified image data

(From Bill Freeman)
Smoothing by Averaging

Kernel:

Linear Filters

- General process:
 - Form new image whose pixels are a weighted sum of original pixel values, using the same set of weights at each point.
- Properties
 - Output is a linear function of the input
 - Output is a shift-invariant function of the input (i.e., shift the input image two pixels to the left, the output is shifted two pixels to the left)

Example: smoothing by averaging
- Form the average of pixels in a neighbourhood

Example: smoothing with a Gaussian
- Form a weighted average of pixels in a neighbourhood

Example: finding a derivative
- Form a weighted average of pixels in a neighbourhood

Convolution

Image (I)

Kernel (K)

Note: Typically Kernel is relatively small in vision applications.

Convolution: $R = K \ast I$

$R(i, j) = \sum_{h=-m}^{m} \sum_{k=-m}^{m} K(h, k) I(i-h, j-k)$

Kernel size is $m+1$ by $m+1$
Convolution: $R = K \ast I$

Kernel size is $m+1$ by $m+1$

$$R(i, j) = \sum_{h=-m/2}^{m/2} \sum_{k=-m/2}^{m/2} K(h, k)I(i-h, j-k)$$
Convolution: $R = K * I$

Kernel size is $m+1$ by $m+1$

$$R(i, j) = \sum_{h=0}^{m} \sum_{k=0}^{m} K(h, k) I(i-h, j-k)$$

Impulse Response

$$0 0 0 0 0 0 0 0$$

Linear filtering (warm-up slide)

original

Pixel offset

Filtered (no change)
Practice with linear filters

![Original Image]

Original

![Filter Image]

Filter

Practice with linear filters

![Original Image]

Original

![Sharpening Filter Image]

Sharpening filter

- Accentuates differences with local average

Smoothing by Averaging

![Kernel Image]

Kernel

Filters are templates

- Applying a filter at some point can be seen as taking a dot-product between the image and some vector.
- Filtering the image is a set of dot products.

Properties of convolution

Let f, g, h be images and * denote convolution.

\[f \ast g(x, y) = \iint f(x-u, y-v)g(u, v)dudv \]

- Commutative: f \ast g = g \ast f
- Associative: f \ast (g \ast h) = (f \ast g) \ast h
- Linear: for scalars a & b and images f, g, h
 \[(af+bg) \ast h = af \ast h + bg \ast h \]
- Differentiation rule
 \[\frac{\partial}{\partial x} (f \ast g) = \frac{\partial f}{\partial x} \ast g = f \ast \frac{\partial g}{\partial x} \]
Filtering to reduce noise

- Noise is what we’re not interested in.
 - We’ll discuss simple, low-level noise today: Light fluctuations; Sensor noise; Quantization effects; Finite precision
 - Not complex: shadows; extraneous objects.
- A pixel’s neighborhood contains information about its intensity.
- Averaging noise reduces its effect.

Additive noise

- \(I = S + N \). Noise doesn’t depend on signal.
- We’ll consider:
 - \(I_i = s_i + n_i \) with \(E(n_i) = 0 \)
 - \(s_i \) deterministic. \(n_i \) a random var.
 - \(n_i, n_j \) independent for \(i \neq j \)
 - \(n_i, n_j \) identically distributed

Averaging Filter

- Mask with positive entries, that sum 1.
- Replaces each pixel with an average of its neighborhood.
- If all weights are equal, it is called a BOX filter.

\[
F = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \quad \frac{1}{9}
\]

(Camps)

Does it reduce noise?

- Intuitively, takes out small variations.

\[
E(\hat{N}(i,j)) = 0 \\
E(\hat{N}^2(i,j)) = \frac{1}{m^2} m \sigma^2 \Rightarrow \hat{N}(i,j) - N(0, \frac{\sigma}{\sqrt{m}})
\]

(Camps)
An Isotropic Gaussian

- The picture shows a smoothing kernel proportional to

$$e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

(which is a reasonable model of a circularly symmetric fuzzy blob)

Smoothing with a Gaussian

Kernel: [image]

Smoothing by Averaging

Kernel: [image]