module adder #(parameter W = 8) (
 input clk,
 input [W-1:0] inA, inB,
 output [W:0] out,
 output isOdd
);

reg [W-1:0] regA, regB;
reg [W:0] regOut;
reg regOdd;
wire [W:0] wireOut;

assign wireOut = regA + regB;
assign out = regOut;
assign isOdd = regOdd;

always@(posedge clk)
begin
 regA <= inA;
 regB <= inB;
 regOut <= wireOut;
 regOdd <= out[0];
end
endmodule

Describe a module called **adder** which can be used to generate a family of circuits according to parameter **W** (default value is 8.) not a good name, since it is more than an Adder.

Input/Output Ports

Create physical wires (Even though it says “reg”!)

Generate an addition circuit,
Inputs are **regA** and **regB** wires.
Output is connected to **wireOut**.

Attach wire **out** to wire **regOut**;
Attach wire **isOdd** to wire **regOdd**;

Create four positive edged-clocked registers, attacked to clock **clk**.

The outputs of the registers should be attached to the **regA,regB,regOut,regOdd** wires.

Inputs of registers should be attached to **inA, inB, wireOut, out[0]** wires.