Problem 1 Let L_1 be the language

$$\{ \langle G \rangle \mid G \text{ is a CFG and } L(G) \text{ includes only finitely many strings}\}.$$

Is L_1 decidable (i.e., recursive)? If so, describe a Turing machine that decides L_1; if not, prove that L_1 is undecidable.

Problem 2 L_2 be the language

$$\{ \langle M, w, q \rangle \mid M \text{ is a Turing machine, } w \text{ is a string, and } q \text{ is a state;} \}
\text{ and } M, \text{ when run on input } w, \text{ never enters the state } q.$$}

Is L_2 decidable (i.e., recursive)? If so, describe a Turing machine that decides L_2; if not, prove that L_2 is undecidable.

Problem 3 Let L_3 be the language

$$\{ \langle M, w \rangle \mid M \text{ is a Turing machine, } w \text{ is a string, and } M \text{ does not visit any state more than once when run on input } w. \}.$$

Is L_3 decidable (i.e., recursive)? If so, describe a Turing machine that decides L_3; if not, prove that L_3 is undecidable.

Problem 4 Closure properties:

a. Show that the class of R.E. languages is not closed under complement.

b. Show that the class of decidable languages is closed under concatenation.